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1. INTRODUCTION 

This introduction section provides information relevant to the other sections of the document and 
is incorporated by reference into Sections two and three, below. The underlying activities that 
drive the Proposed Actions are the operation and maintenance of five hatchery programs rearing 
and releasing salmon into Lake Washington. The hatchery programs are operated by state and/or 
tribal agencies as described in Table 1. Each program is described in detail in a Hatchery and 
Genetic Management Plan (HGMP) submitted to the National Marine Fisheries Service (NMFS) 
for review. 

Table 1. Lake Washington watershed HGMPs submitted to NMFS for evaluation of ESA-
listed salmon and steelhead effects. MIT = Muckleshoot Indian Tribe; SAFS = 
School of Aquatic and Fisheries Sciences; SPU = Seattle Public Utilities; WDFW = 
Washington Department of Fish and Wildlife. 

Hatchery and Genetics Management Plan Program 
Operator 

Program Funder 

University of Washington Aquatic Research 
Facility Hatchery – Fall Chinook salmon 

SAFS TBD 

University of Washington Aquatic Research 
Facility Hatchery coho 

SAFS TBD 

Issaquah Fall Chinook Hatchery Program WDFW WDFW, MIT 
Issaquah coho Hatchery Program WDFW WDFW, MIT 

Lake Washington Sockeye Program SPU; WDFW SPU, WDFW  
 
1.1.  Background 

NMFS prepared the biological opinion (opinion) and incidental take statement portions of this 
document in accordance with section 7(b) of the Endangered Species Act (ESA) of 1973, as 
amended (16 U.S.C. 1531, et seq.), and implementing regulations at 50 CFR 402. The opinion 
documents consultation on the actions proposed by Muckleshoot Indian Tribe (MIT) and 
Washington Department of Fish and Wildlife (WDFW). We also completed an Essential Fish 
Habitat (EFH) consultation on the proposed action, in accordance with section 305(b)(2) of the 
Magnuson-Stevens Fishery Conservation and Management Act (MSA) (16 U.S.C. 1801, et seq.) 
and implementing regulations at 50 CFR 600. 
 
We completed pre-dissemination review of this document using standards for utility, integrity, 
and objectivity in compliance with applicable guidelines issued under the Data Quality Act 
(DQA) (section 515 of the Treasury and General Government Appropriations Act for Fiscal Year 
2001, Public Law 106-554). The document will be available within two weeks at the NOAA 
Library Institutional Repository [https://repository.library.noaa.gov/welcome]. A complete 
record of this consultation is on file at the Sustainable Fisheries Division (SFD) of NMFS in 
Portland, Oregon. 
 

https://repository.library.noaa.gov/welcome
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1.2. Consultation History 

The first hatchery consultations in Puget Sound followed the listing of the Puget Sound Chinook 
salmon Evolutionarily Significant Unit (ESU) under the ESA (64 FR 14308, March 24, 1999). In 
2005, WDFW and the Puget Sound Tribes (“co-managers”) completed two resource 
management plans (RMP) as the overarching frameworks for 114 HGMPs (PSIT and WDFW 
2004; PSTT and WDFW 2004). 
 
The HGMPs described how each hatchery program would operate including effects on listed fish 
in the Puget Sound region. In 2004, the co-managers submitted the two RMPs and 114 HGMPs 
to NMFS for ESA review under limit 6 of the ESA 4(d) rule (50 C.F.R. 223.203). Of the 114 
HGMPs, 75 were state-operated, including 27 Chinook salmon programs, 22 coho salmon 
programs, 2 pink salmon programs, 4 chum salmon programs, 2 sockeye salmon programs, and 
18 steelhead programs. The Puget Sound Tribes submitted 38 HGMPs, including 14 for Chinook 
salmon, 13 for coho salmon, 9 for chum salmon, and 2 for steelhead. USFWS submitted one 
HGMP for its coho salmon program at Quilcene National Fish Hatchery. 
 
Subsequent to the submittal of the plans to NMFS, the Puget Sound Steelhead Distinct 
Population Segment (DPS) was listed as “threatened” (72 FR 26722, May 11, 2007). On 
September 25, 2008, NMFS issued a final 4(d) rule adopting protective regulations for the listed 
Puget Sound steelhead DPS (73 FR 55451). In the final rule, NMFS applied the same 4(d) 
protections for steelhead as were already adopted for other ESA-listed Pacific salmonids in the 
region. Accordingly, the co-manager hatchery plans are now also subject to review for effects on 
listed steelhead. 
 
Among the Puget Sound region HGMPs that have been submitted for NMFS’ consideration 
under the ESA are five plans developed by the MIT, WDFW, and University of Washington 
Aquatic Research Facility (UW ARF) describing hatchery programs for Chinook salmon, coho 
salmon and sockeye salmon in the Lake Washington watershed. On April 30, 2019, NMFS 
received four HGMPs with a request for review under limit 6 of the 4(d) rule for coho and 
Chinook salmon programs at UW ARF and coho and Chinook salmon programs at the Issaquah 
Hatchery. Subsequently, a fifth HGMP was submitted for review under 4(d) rule, limit 6, 
describing a program for Lake Washington sockeye. 
 
During pre-consultation, the co-managers have also had an opportunity to further assess the 
potential for expanded hatchery programs at a variety of locations in the Lake Washington Basin. 
Although the assessment is ongoing, indications are that, in the short-term, the University of 
Washington Aquatic Research Facility (UW ARF) could be used as a satellite rearing station for 
the Issaquah Hatchery, and in the mid- to long-term has the potential for adult collection, egg 
incubation, juvenile rearing, and to be a release site. This biological opinion is based on 
information provided in the five HGMPs and from discussions and detailed analyses with the co-
managers of alternative options for the hatchery production of salmon in the Lake Washington 
Basin. 
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1.3.  Proposed Action  

“Action,” as applied under the ESA, means all activities, of any kind, authorized, funded, or 
carried out, in whole or in part, by Federal agencies (50 CFR 402.02). For EFH consultation, 
“Federal action” means any on-going or proposed action authorized, funded, or undertaken by a 
Federal Agency (50 CFR 600.910). Because the actions of the Federal agencies are subsumed 
within the effects of the hatchery program and any associated research, monitoring and 
evaluation, the details of each hatchery program are summarized in this section. 
 
The Proposed Action for this consultation is NMFS’ determination under limit 6 of the ESA 4(d) 
rules.  The objective of this Proposed Action is to determine whether the HGMPs presented meet 
the requirements of limit 6 so that the operation and maintenance of the five salmon hatchery 
programs operating in Lake Washington (Figure 1) can be exempted from the ESA’s take 
prohibitions. Specifically, this document evaluates whether the Proposed Action complies with 
the provisions of Section 7(a)(2) of the ESA and ESA Section 4(d) Limit 6 for resource 
management plans developed jointly by states and tribes within the U.S. v. Washington construct. 
The duration of the Proposed Action is intended to be ongoing. 
 
We considered, under the ESA, whether or not the proposed action would cause any other 
activities. The proposed hatchery programs analyzed in this opinion also contribute to regional 
fisheries outside of the Lake Washington watershed and marine terminal areas. The effects of all 
fisheries that incidentally harvest ESA-listed fish species originating from the action area 
hatcheries, including fisheries directed at WDFW hatchery and Muckleshoot and Suquamish 
tribal hatchery salmonids, have been evaluated through a separate NMFS ESA consultation 
(NMFS 2021c) and are included 
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Figure 1. Map depicting the Lake Washington the location of facilities related to the 

programs in the Proposed Action. 
 
1.3.1.  Proposed hatchery broodstock collection 

Details of broodstock origin, collection, duration, and number are listed in 
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Table 2. Broodstock for releases of Chinook and coho salmon at all locations may originate from 
any of the collection locations identified. NMFS defines “integrated” as a program for which the 
intent is to use natural-origin fish in the broodstock and “segregated” or “isolated” as a program 
for which the intent is to only use hatchery-origin fish in the broodstock. Additionally, programs 
can operate as a genetically-linked program one where the integrated program uses a mix of 
natural-origin and hatchery-origin fish as broodstock, but the segregated program uses returnees 
from the integrated program as all or part of its broodstock, genetically linking the two programs 
(Section 5.2.1.4.3; Figure). 
 
The Issaquah Coho Hatchery program is integrated and has two satellite components that receive 
eggs or fingerlings from the main hatchery: Edmonds net pen, and Willow Creek Hatchery 
 
The Issaquah Fall Chinook Hatchery program will run as a segregated program unless the NOR 
population size meets a minimum trigger (WDFW and Muckleshoot Indian Tribe 2020c). Under 
this segregated program, only HORs will be spawned at the hatchery and NORs will be passed 
upstream to spawn naturally in upper Issaquah Creek. The Issaquah Fall Chinook Hatchery 
program will transition into a genetically-linked program when the minimum trigger is reached.  
This will occur when the population of NORs in Issaquah Creek is expected to exceed 500 fish 
for a third straight year. This assumes the two preceding years had more than 500 adult natural-
origin returns and that the current pre-season forecast also exceeds that trigger (Table 3).  Under 
this scenario, Issaquah Hatchery’s goal will be to release 200,000 sub-yearling Chinook derived 
solely from natural origin parents. These juvenile Chinook will be 100% coded-wire tagged 
(CWT).  Any NORs excess to this program will be released upstream. A higher trigger occurs 
when the NOR population exceeds 800 for three straight years. When this occurs, the only 
change is that the integrated production will be doubled to 400,000 sub-yearlings. If the specific 
trigger is not met at the 800 natural-origin adult Chinook salmon level, but meets the 500 
natural-origin level, the integrated program would revert back to 200,000 sub-yearling Chinook 
salmon. If the specific trigger is not met at the 500 natural-origin adult Chinook salmon level, the 
Issaquah Chinook salmon program would revert back to running as a segregated program. 
 
The Issaquah Fall Chinook Hatchery program would use Chinook salmon collected at the 
Ballard Locks or at Issaquah Creek. In the event of a broodstock shortfall, eggs sufficient to fill 
that shortfall would be transferred from hatcheries on the Green River, if available. This would 
follow the WWITT and WDFW (2006) Salmon Disease Control Protocol. More specific details 
of the program are outlined in Table 2 and Table 4  
 
Initially, UW ARF will be used as an acclimation and/or release site for Issaquah coho and 
Chinook and will rely on juveniles from Issaquah Hatchery. As the UW ARF Hatchery programs 
come on line, the programs would likely require eggs transferred from the Issaquah Hatchery 
and/or using returning adults from juveniles previously released at the UW ARF as the initial 
source for coho and Chinook salmon broodstock. Once more established, the UW ARF programs 
would operate with a segregated broodstock management strategy with all broodstock 
anticipated to be obtained from the UW ARF volitional-entry adult collection pond at Portage 
Bay. In the event of a shortfall, eggs will be transferred from Issaquah Hatchery. 
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The Lake Washington sockeye program is an integrated program that has used local in-basin fish 
collected from the Cedar River Weir (river mile (RM) 1.0) and Landsburg Dam on the Cedar 
River (RM 27.1). Broodstock collections may occur at the Cedar River Weir, Landsburg Dam, 
Bear Creek, Issaquah Creek, Cedar River, and the Ballard Locks. Recent declines in escapement 
might require using supplemental sources to meet broodstock targets.  Supplemental sources for 
broodstock might include: Alaska,  Baker Lake, Quinault River, Lake Wenatchee, or upper 
Columbia River. 
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Table 2. Broodstock collection details for five hatchery programs in the Lake Washington watershed. UW = University of 
Washington Aquatic Research Facility; N/A = Not applicable. 

 
Program Local 

source 
Collection 

Location(s) 
Collection Method Collection/Hold

ing Target 
(adults)  

Egg Take 
goal 

Collection 
Duration 

pNOB 

Issaquah Fall Chinook 
Hatchery Program 
(genetically-linked)1 

Natural and 
hatchery 

Issaquah Creek2 Air-bladder weir diverts fish 
into volitional entry ladder and 

holding ponds 

3,360  7,000,000 September - 
December 

0 

Ballard Locks3 Dip net from fish ladder July - September 

Issaquah Coho Hatchery 
Program (integrated) 

Natural and 
hatchery 

Issaquah Creek2 Air-bladder weir diverts fish 
into volitional entry ladder and 

holding ponds 

1,130  985,000 October - 
December 

up to 1 

UW ARF Hatchery Fall 
Chinook Salmon 
(segregated) 

Hatchery Portage Bay3 Volitional-entry ladder and 
holding pond; beach seine 

180  360,000 September – 
October 

0 

UW ARF Hatchery Coho 
(segregated)  

Hatchery Portage Bay3 Volitional-entry ladder and 
holding pond; beach seine 

180  167,000 September - 
December 

0 

Lake Washington 
Sockeye 
(Integrated) 

Natural and 
hatchery 

Landsburg Dam3 
Cedar River Weir3;  

Bear Creek3,4; 
Issaquah Creek3, 

Other3,5 

Ladder, weir, and holding 
ponds  

24,000 6 34,000,000 September - 
November 

at least 0.57 

Ballard Locks3   Dip net from fish ladder June – August 

Cedar River3 Gill net, angling, fyke nets, 
hoop traps, and other 

experimental gear 

September - 
November 

 
 

1 Issaquah fall Chinook hatchery program will initially begin as a segregated program and, through a trigger approach (detailed in the text and Error! Reference 
source not found.), will transition into a genetically-linked program. 
2 Eggs from hatcheries on the Green River may be used to backfill a shortfall in egg take. 
3 Eggs may be transferred to Issaquah Hatchery. 
4 This weir would be used as a contingency plan for the collection of sockeye during low sockeye salmon run sizes. 
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5 The use of egg transfer from Alaska, Baker Lake, Quinault River, Lake Wenatchee, or upper Columbia River would be considered if d   
prevents meeting egg take goals. 
6 Collection target at weir and other locations will be adjusted to reflect average pre-spawning mortality. 
7 The co-managers expectation is that when adult sockeye spawning escapement goals in the Cedar River are met, the long term expect       
of the fry entering Lake Washington will be naturally produced and at least 50% of the adults returning to the basin are from natural pro     
spawning escapements fall below this goal, the fry entering Lake Washington will be increasingly dominated by hatchery origin recruit      
sizes of adult sockeye entering the Cedar River, up to the full spawning population will be targeted for broodstock collection. 
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1.3.1.1. Weirs and Traps 

The hatchery programs in this biological opinion use weirs and fish ladders to collect returning 
hatchery-origin fish. The Issaquah Hatchery programs collect coho, Chinook, and sockeye 
salmon that return to a trap located at the facility. The weir is operated approximately August 
through Mid-November and is checked daily.  In addition, Chinook and sockeye may be dip-
netted from the Ballard Locks fish ladder for broodstock collection. The Lake Washington 
sockeye hatchery collects sockeye at a temporary floating resistance board weir (seasonally 
installed) located at RM 1.0. The co-managers are in the process of expanding operations at the 
weir; upgrades will undergo separate Section 7 consultations to ensure ESA compliance. 
Additionally, the fish passage facility located at Landsburg Dam (RM 21.7) removes adult 
sockeye (ESA section 10(a)(1)(B) permit 1235) to prevent water quality issues that may occur as 
a result of fish carcasses that are passed upstream. Some of these fish will be provided to the 
Lake Washington sockeye hatchery for use in broodstock (described in the HGMP). A seasonal 
weir may also be installed on Bear Creek for sockeye broodstock collection. Additional Cedar 
River locations may be used for sockeye broodstock collection. 
 
The ladder to the volitional-entry adult broodstock collection pond at the UW ARF facility is located 
in Portage Bay. It is open for broodstock collection from September through December and closed 
the rest of the year. 
 
1.3.2.  Proposed Mating Protocols (listed fish only) 

Chinook salmon that would be spawned at Issaquah Hatchery for broodstock would be selected 
randomly from the returning fall Chinook salmon population. Every attempt would be made to 
ensure that the egg-take would be representative of the entire run. All male Chinook salmon 
collected, including jacks, would be considered for spawning. Males would be chosen randomly 
from the held population, and jacks would be incorporated into spawning at a rate of up to 2% of 
spawned males. Mating would be conducted using matrix-spawning protocols where each male 
fish may be crossed (spawned) with five female fish of the opposite sex. If the male is not ripe or 
has little milt, another male would be selected to assure fertilization. 
 
The UW ARF Hatchery Chinook salmon program would use adipose fin-clipped, mature fall 
Chinook salmon. Using a 1:1 sex ratio, fish would be spawned 3-5 times each week depending 
on the  ripeness of fish.  
 
1.3.3. Proposed Adult Management 

While the Issaquah Fall Chinook Hatchery program is run as a segregated program, the co-
managers would not use NOR in broodstock and all unclipped fish would be passed upstream 
above the weir to spawn naturally. While the Issaquah Fall Chinook Hatchery program is run as a 
genetically-linked program, the co-managers would incorporate up to 50% of unmarked fish that 
return to the Issaquah adult pond holding facility into the broodstock of the integrated component 
(Table 3). Up to 3,000 coho above broodstock needs will be released upstream of the hatchery to 
spawn naturally. Some coho may be out-planted to other streams in the greater Lake Washington 
Basin. The remainder will be sold to a carcass buyer. For the Lake Washington Sockeye 
Hatchery, any fish not collected for broodstock are left in the river below Landsburg Dam to 
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spawn naturally. Excess sockeye will be returned to the river. Sockeye are not passed above the 
dam in order to protect the municipal water supply and are collected at the fish ladder for 
hatchery broodstock. 
 
1.3.4. Proposed hatchery rearing and juvenile release 

The details of hatchery juvenile rearing and release, including release numbers, marking/tagging, 
rearing and release locations, and release timing can be found in Table 4. 
 
The Chinook Hatchery programs in Lake Washington basin would rear up to 6,000,000 sub-
yearlings. Potential release locations of Issaquah Hatchery Chinook would include Issaquah 
Creek, Lake Washington Ship Canal, Sammamish Slough and tributaries, Portage Bay, and the 
Kenmore Boat Ramp (north Lake Washington), and other downstream sites yet to be developed.  
A portion of these fish would be CWT and ad-clipped to track the dispersion of fish throughout 
the watershed. MIT and WDFW conducted a research study using two alternative release 
locations (Lake Washington Ship Canal and Kenmore boat ramp) of Chinook smolts released 
from Issaquah Hatchery in 2016-2018 to evaluate survival of fish at these off-station locations. 
Smolts were released directly and were not acclimated at these release sites. Some of this release 
cohort began returning to the watershed as age 4 adults in 2019 and the complete cohort would 
return by 2022.  Results are not yet available as the evaluation of these sites is ongoing co-
managers would provide the final report to NMFS for further discussion and review. 
 
Initially, UW ARF will be used as an acclimation and/or release site for Issaquah Chinook and 
will rely on juveniles from Issaquah Hatchery. As the UW ARF program comes online, rearing 
and release of juveniles would also occur at that location (Table 4). 
 
The coho hatchery programs in the Lake Washington basin would rear up to 775,000 yearlings, 
420,000 fry (340,000 of these are for educational activities), and 90,000 sub-yearlings. Potential 
release locations of Issaquah Hatchery coho would include Issaquah Creek, Lake Washington 
Ship Canal, Sammamish Slough and tributaries, Portage Bay, and the Kenmore Boat Ramp 
(north Lake Washington), and other downstream sites yet to be developed.  A portion of these 
fish would be CWT and ad-clipped to track the dispersion of fish throughout the basin. Prior to 
release fish are checked to determine the degree of smolting.  The degree of smolting is 
somewhat variable and is based on several factors including; fish size, weather patterns such as 
pressure changes and fronts, water flow patterns, and temperature. The release timing of coho 
yearlings is based on the degree of smoltification observed in the fish.  As the fish enters a 
smolting period, parr marks begin to disappear, the fish begin to develop a silvery coloration, 
scales are more easily lost, they go off of feed, and they begin circling the rearing raceways 
looking for a way out of the rearing ponds (Brodie Antipa WDFW personal communication). 
Generally, Issaquah Hatchery operators begin to see coho smolting in mid to late March with a 
typical peak in early to mid-April. 
 
Initially, UW ARF will be used as an acclimation and/or release site for Issaquah coho and will 
rely on juveniles from Issaquah Hatchery. As the UW ARF program comes on line, rearing and 
release of juveniles would also occur at that location (Table 4). Coho reared at 
Cooperative/School programs, Willow Creek Hatchery, or Laebugten/Edmonds Net Pen would 
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be released to the Lake Washington Basin, Puget Sound Independent Tributaries, or Puget Sound 
Table 4 
 
The Lake Washington Sockeye program would release up to 34,000,000 fry. A portion of these 
fish may be reared to larger size classes at the Cedar River Hatchery, Issaquah Hatchery, and 
UW ARF (Table 4). 
 
1.3.5. Health 

Fish health is monitored throughout the incubation and rearing cycle for signs of disease. 
Similar practices, with a few noted exceptions, are used for coho and Chinook salmon programs 
at Issaquah Hatchery and the Lake Washington Sockeye Hatchery. Daily fish health would be 
evaluated following protocol defined in the Salmonid Disease Control Policy of the Fisheries 
Co-managers of Washington State (NWIFC and WDFW 2006 updated 2006). Additionally, 
monthly health checks would be conducted by WDFW Fish Health Specialist and a final health 
check would be conducted prior to release.  
 
Coho and Chinook salmon eggs received at UW ARF would be hatched, reared, and released on 
site. During rearing, daily fish health will be evaluated by staff with expertise in fish health. Prior 
to release, a final health assessment will be conducted, the adipose fin would be removed, and, in 
some fish, a CWT would be implanted (Table 4). 
 

Table 3. Proposed annual release protocols for the Genetically linked Fall Chinook 
program at Issaquah Hatchery. 

Issaquah 
Creek 
NOR 3- 
year 
Trigger1  

Program 
component 

Release Number2, Life Stage, and Size (fpp) Marking and Tagging 

≥ 500 Segregated Up to 5,800,000; sub-yearling; 80-110 AD 
Integrated 200,000; sub-yearling; 80-110 AD 

100% CWT 
≥ 800 Segregated Up to 5,600,000; sub-yearling; 80-110 AD 

Integrated 400,000; sub-yearling; 80-110 AD 
100% CWT 

 

1 See text for full description of decision rule for integrated program. 
2 The planned total Chinook salmon releases would not exceed 6M; i.e., if the planned UW ARF release was 0.18M, 
the Issaquah Fall Chinook Hatchery planned release would be 5.82M. 
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Table 4. Proposed annual release protocols for coho, Chinook, and sockeye salmon hatchery programs in Lake Washington 
watershed. The sockeye salmon program could be managed in three phases, and releases in the third phase are 
italicized. AD = adipose fin clip; CWT = coded-wire tag; fpp = fish per pound.  

Program Release number, Life 
Stage, and Size (fpp) 

Marking 
and 

Tagging 

Rearing, Acclimation 
Site? 

Release Location Volitional 
Release? 

Release 
Time 

Issaquah 
Chinook 
(Genetically-

linked1) 

Up to 6,000,0002; sub-
yearling; 80-110 

AD 
CWT3 

Issaquah Hatchery, 
Sammamish Slough and 
tributaries, UW ARF2, 

downstream sites 

Issaquah Creek, Lake 
Washington Ship Canal, 
Sammamish Slough and 

tributaries, Kenmore boat 
ramp, Portage Bay, 

downstream sitesError! 

Bookmark not defined.,4 

No5 April-
June 

Issaquah coho 
(integrated) 

750,000; yearling; 17 
 

AD, 
AD+CWT3 

Issaquah Hatchery, UW 
ARF, Sammamish 

Slough and tributaries, 
downstream sites 

Issaquah Creek; 
Lake Washington ship 

canal; Portage Bay, 
Sammamish Slough and 

tributaries, 
Kennmore boatramp, 
downstream sitesError! 

Bookmark not defined. 

No5 March - 
June 

340,000; fry; 200 – 1,500 unmarked Cooperative and School 
programs 

Lake Washington basin No May- 
June 

25,000; yearling; 10 AD Laebugten/Edmonds Net 
Pen 

Puget Sound No May - 
June 

10,000; fry; 100 unmarked Willow Creek Hatchery Lake Washington Basin, No June  
70,000; fry; 500 unmarked WIRA 8 Independent 

Tributaries6 
No April-

May 
UW ARF- 
Chinook 
salmon 
(segregated) 

180,0002; sub-yearling; 20-
110 

AD 
CWTError! 

Bookmark not 

defined.3 

UW ARF, Issaquah 
Hatchery  

Portage Bay Yes April - 
June 
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UW ARF- 
Coho 
(segregated) 

90,000; sub-yearling (0 age 
smolts); 30-50 

AD 
CWT3 

UW ARF, Issaquah 
Hatchery  

Portage Bay Yes April - 
June 

Lake 
Washington 
Sockeye  
(Integrated) 

<34,000,0007/34,000,000; 
fry; 2,000 

Otolith Cedar River Sockeye 
Hatchery, Issaquah 
Hatchery, UW ARF 

Cedar River, Lake 
Washington,  

No Jan. – 
May 

<480,000/1,000,000; sub-
yearling; 150-800 

AD8, Otolith Cedar River Sockeye 
Hatchery, Issaquah 

Hatchery, net pen (s)9, 
UW ARF 

Cedar River, Lake 
Washington, Lake 

Washington Ship Canal, 
Portage Bay, net pen(s)8 

May – 
June 

<300,000/1,000,000; sub-
yearling; 80-150 

AD8,3, 
Otolith 

Sept. – 
Oct. 

< 40,000/1,000,000; 
yearling; 15-80 

AD8,3, 
Otolith 

April – 
May 

 
 

1 Issaquah Fall Chinook hatchery program will initially begin as a segregated program and, through a trigger approach that is detailed in the text Error! 
Reference source not found. and Table 4,  will transition into a genetically-linked program. 
2 The planned total Chinook salmon releases in Lake Washington watershed would not exceed 6M; i.e., if the planned UW ARF release was 0.18M, the Issaquah 
Fall Chinook planned release would be 5.82M. 
3 Released fish may be implanted with a coded wire tag (CWT) in the future depending on research and/or Co-manager needs 
4 Pilot study and evaluation is in progress for releases at multiple locations in the Lake Washington Basin including: the Kenmore boat ramp, the 14th Street boat 
ramp in the Lake Washington ship canal, and the UW ARF Pond with releases into Portage Bay. Other sites such as the NOAA facility at Sand Point may be 
used in the future pending continued discussions amongst the co-managers and NMFS. 
5 Volitional releases may occur at locations other than the Issaquah Hatchery depending on the release location and acclimation site design. 
6 Fry are released from the Willow Creek Hatchery program into several creeks that drain directly to Puget Sound: Shell Creek, Willow/Shellabarger Creek 
(Shellabarger is a tributary to Willow), Perrinville Creek, Lunds Gulch Creek, Northstream Creek, and Boeing Creek. 
7 The planned total sockeye salmon releases in Lake Washington watershed would not exceed 34M. 
8 Fish smaller than 250 fpp cannot be reliably adipose clipped, so, if the fish are released prior to this size, they will only have an otolith mark. 
9 The co-managers may consider using net pens to rear juvenile sockeye and hold adult salmon in the future. However, those options are not part of the action 
under consideration in this consultation (WDFW and Muckleshoot Indian Tribe 2020b).  
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1.3.6. Proposed disposition of excess juvenile and adult hatchery fish, broodstock 
and post-spawned carcasses 

At Issaquah Hatchery and associated programs, egg-take is carefully managed to minimize the 
likelihood of collecting surplus eggs or raising surplus fry. However, in years of high within-
hatchery survival, juvenile production levels higher than the proposed release numbers may 
occur. The co-managers plan to limit production to no more than 10% above levels described in 
the HGMPs and in Table 3 and Table 4; an overage of 10% is anticipated to be a rare occurrence. 
If the running 5-year average production (beginning in the release year that NOAA makes a 
determination on the program)1, for a species-stage in the Lake Washington Drainage is more 
than 5% above the level described, the co-managers will notify NMFS. 
 
Surplus eggs at the UW ARF would be retained to offset losses incurred during the rearing 
process, but will be destroyed once release goals are achieved (Table 5). Surplus eggs would not 
be retained by the other programs listed except as needed to meet program objectives and after 
discussion with NMFS. 

Table 5. Disposition of excess adult hatchery fish, broodstock, and post-spawned carcasses. 
Program Disposition 

Issaquah Fall 
Chinook salmon  

• Unmarked Chinook salmon above broodstock needs will be released upstream 
of the hatchery to spawn naturally 

• All other surplus fish will be sold to a carcass buyer 
Issaquah coho  • Up to 3,000 above broodstock needs will be released upstream of the hatchery 

to spawn naturally 
• Remaining fish may be out-planted in Sammamish and Lake Washington 

watershed tributaries 
• All other surplus fish will be sold to a carcass buyer 

UW ARF Fall 
Chinook salmon 

• Sampled for virology 
• Carcasses sold to a carcass buyer, distributed to cooperative projects for 

nutrient enhancement in Lake Washington rivers and tributaries, or transported 
to a landfill. 

UW ARF coho • Sampled for virology 
• Carcasses sold to a carcass buyer, distributed to cooperative projects for 

nutrient enhancement in Lake Washington Rivers and tributaries, or transported 
to a landfill. 

Sockeye • Excess male broodstock may be released back into the river 
• Spawned carcasses are returned to the Cedar River for nutrient enhancement 
• Pre-spawn mortalities will be disposed of in a local landfill 

 
 

                                                 
1 Additionally, if the number of fish released after one or two years is so high that attainment of the proposed release 
numbers across five years is not a reasonable expectation the co-managers will notify NMFS. 
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1.3.7. Proposed research, monitoring, and evaluation (RM&E) 

Research, monitoring, and evaluation activities described below in Table 6 are activities that 
have been evaluated through this opinion, or have current ESA coverage through another permit 
or 4(d) authorization. 

Table 6. Research, monitoring, and evaluation that may occur and are associated with the 
five salmon hatchery programs and any existing ESA coverage.  This may vary for 
species/release site/return location.  See HGMPs for more details. 

Activity Associated Program ESA coverage 
Monitor adult collection, escapement, origin, 
length, age, genetic samples, redd submersion, egg 
volume, marks/tags, catch contribution, and return 
timing  

All This Opinion 

Monitor proportion of hatchery- and natural-origin 
fish in natural production areas to collect basic life 
history information (i.e., length, maturity, 
migration status, marks/tags, sex, age, origin, and 
condition) and estimate escapement 
 

All This Opinion 

Smolt-to-adult survival and outmigration timing 
using CWT data 
 

All This Opinion 

Within-hatchery monitoring of fish health and 
survival 
 

All This Opinion 

Acoustic transmitters and/or passive integrated 
transponder tags in smolts to identify effects of 
release locations on outmigrating smolt survival 
and travel time  

Issaquah Hatchery Coho 
and Chinook program 

This Opinion 

Lake Washington Tributary Downstream-Migrant 
Salmon Evaluation: Sample and estimate the 
abundance of juvenile salmonids using migrant 
traps in the Cedar River and Bear Creek; PIT tag a 
proportion, purse seining of juvenile sockeye in 
Lake Union. 
 

• Issaquah Hatchery 
Coho and Chinook 
programs 

• Lake Washington 
Sockeye program 

4(d) (annual) 

 
 
1.3.8. Proposed operation and maintenance of hatchery facilities 

Water at all facilities would be withdrawn in accordance with state-issued water rights. All 
facilities that rear over 20,000 pounds of fish must comply with the National Pollutant Discharge 
Elimination System (NPDES) through a general permit issued by the United States 
Environmental Protection Agency (See Table 7 for more details). Withdrawal as it affects 
streamflow will be discussed in Effects of the Action factor five (section 2.5.2.5. 
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Several routine (and semi-routine) maintenance activities occur in or near water that could 
impact fish in the area including: sediment/gravel removal/relocation from intake and/or outfall 
structures, pond cleaning, pump maintenance, debris removal from intake and outfall structures, 
and maintenance and stabilization of existing bank protection. All in-water maintenance 
activities considered “routine” (occurring on an annual basis) or “semi-routine” (occurring with 
regularity, but not necessarily on an annual basis) for the purposes of this action will occur 
within existing structures or the footprint of areas that have already been impacted. 
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Table 7. Details for those facilities that divert water for hatchery operations; NA = not applicable. 
Facilities Surface/Spring 

Water (cfs) 
Ground 
Water 
(gpm) 

Water 
Diversion 
Distance 

(km) 

Water Source Discharge 
Location 

Meet NMFS 
Screening 
Criteria 
(Criteria 

year)? 

NPDES 
Permit # 

Water Right 
Permit # 

Issaquah  NA 49 NA Darigold/ West 
Farms Foods  

N/A N/A WAG 13-
3010 

G1-21648C  

16 NA 0.002 Issaquah Creek Issaquah 
Creek 

Yes S1-00735C 
10 NA 1.19 Yes S1-04730C  
10 NA 0.009  Yes S1-*20852C  

Willow Creek 
Hatchery 

1  NA 0.005 Willow Creek 
(Deer Creek) 

 Willow 
Creek 

Yes NA S1-24635C 

Edmonds Net 
Pens 

NA1 NA NA Puget Sound NA NA NA2 NA 

UW ARF 5.0 NA NA Lake Union Lake 
Union 

Yes3 NA2 SI-*14169C 

NA 80 NA Groundwater Lake 
Union 

Yes NA2 G1-007311CL 

NA 50 NA Groundwater Lake 
Union 

Yes NA G1-007312CL 

Cedar River  NA 1.7 0.54 Unnamed Spring Cedar 
River 

Yes NA SI-23174 
(WDFW) 

4.46 NA 0.21 Cedar River Cedar 
River 

Yes NA NA 4 

1.3 NA 0.26 Unnamed 
Stream  

Cedar 
River 

Yes NA SI-28457P 
(SPU) 

NA 2,000 NA Groundwater Cedar 
River 

NA NA G1-28811 

2.0 NA 0.09 Unnamed 
Stream 

Cedar 
River 

Yes NA SI-28458P 
(SPU) 

0.9 NA 0.44 Unnamed 
Stream  

Cedar 
River 

Yes NA SI-28500P 
(SPU) 
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1 Net pens use seawater, passively supplied through tidal flow, for acclamation of coho salmon, and the amount coursing through the ne     
relative to the total amount of water in Puget Sound 
2 Releases less than 20,000 pounds of fish per year and/or feed fish less than 5,000 pounds of fish feed per year do not require a NPDES  
3 NMFS engineer determined that water intake at this facility is an infiltration gallery (STOP) 
4 The usage of surface water is accounted for under Seattle Public Utility drinking water withdrawal and does not require an additional  
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2. ENDANGERED SPECIES ACT: BIOLOGICAL OPINION AND INCIDENTAL TAKE STATEMENT 

The ESA establishes a national program for conserving threatened and endangered species of 
fish, wildlife, plants, and the habitat upon which they depend. Section 7(a)(2) of the ESA 
requires Federal agencies to consult with the USFWS, NMFS, or both, to ensure that their 
actions are not likely to jeopardize the continued existence of endangered or threatened species 
or adversely modify or destroy their designated critical habitat. Section 7(b)(3) requires that at 
the conclusion of consultation, the Service provide an opinion stating how the agencies’ actions 
will affect listed species and their critical habitat. If incidental take is expected, section 7(b)(4) 
requires the consulting agency to provide an Incidental Take Statement (ITS) that specifies the 
impact of any incidental taking and includes reasonable and prudent measures to minimize such 
impacts. 
 
NMFS determined the proposed action is not likely to adversely affect Lake Ozette Sockeye 
Salmon and Hood Canal Summer Chum Salmon or their critical habitat. Our concurrence is 
documented in the "Not Likely to Adversely Affect" Determinations section (Section 2.11). 
 
2.1. Analytical Approach 

This biological opinion includes both a jeopardy analysis and/or an adverse modification 
analysis. Section 7(a)(2) of the ESA requires Federal agencies, in consultation with NMFS, to 
ensure that their actions are not likely to jeopardize the continued existence of endangered or 
threatened species, or adversely modify or destroy their designated critical habitat. The jeopardy 
analysis considers both survival and recovery of the species. “To jeopardize the continued 
existence of a listed species” means to engage in an action that would be expected, directly or 
indirectly, to reduce appreciably the likelihood of both the survival and recovery of the species in 
the wild by reducing the reproduction, numbers, or distribution of that species or reduce the 
value of designated or proposed critical habitat (50 CFR 402.02).  
 
This biological opinion relies on the definition of “destruction or adverse modification,” which 
“means a direct or indirect alteration that appreciably diminishes the value of critical habitat as a 
whole for the conservation of a listed species” (50 CFR 402.02). 
 
The designations of critical habitat for the species considered in this opinion use the terms 
primary constituent element (PCE) or essential features. The 2016 critical habitat regulations (50 
CFR 424.12) replaced this term with physical or biological features (PBFs). The shift in 
terminology does not change the approach used in conducting a “destruction or adverse 
modification” analysis, which is the same regardless of whether the original designation 
identified PCEs, PBFs, or essential features. We use the term PCE as equivalent to PBF or 
essential feature, due to the description of such features in applicable recovery planning 
documents. 
 
The 2019 regulations define effects of the action using the term “consequences” (50 CFR 
402.02).  As explained in the preamble to the regulations (84 FR 44977), that definition does not 
change the scope of our analysis and in this opinion we use the terms “effects” and 
“consequences” interchangeably. 
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We use the following approach to determine whether a proposed action is likely to jeopardize 
listed species or destroy or adversely modify critical habitat: 
 
Identify the range-wide status of the species and critical habitat 

This section describes the status of species and critical habitat that are the subject of this opinion. 
The status review starts with a description of the general life history characteristics and the 
population structure of the ESU/DPS, including the strata or major population groups (MPG) 
where they occur. NMFS has developed specific guidance for analyzing the status of salmon and 
steelhead populations in a “viable salmonid populations” (VSP) paper (McElhany et al. 2000). 
The VSP approach considers four attributes, the abundance, productivity, spatial structure, and 
diversity of each population (natural-origin fish only), as part of the overall review of a species’ 
status. For salmon and steelhead protected under the ESA, the VSP criteria therefore encompass 
the species’ “reproduction, numbers, or distribution” (50 CFR 402.02). In describing the range-
wide status of listed species, NMFS reviews available information on the VSP parameters 
including abundance, productivity trends (information on trends, supplements the assessment of 
abundance and productivity parameters), spatial structure and diversity. We also summarize 
available estimates of extinction risk that are used to characterize the viability of the populations 
and ESU/DPS, and the limiting factors and threats. To source this information, NMFS relies on 
viability assessments and criteria in technical recovery team documents, ESA Status Review 
updates, and recovery plans. We determine the status of critical habitat by examining its PBFs. 
Status of the species and critical habitat are discussed in Section 2.2. 
 
Describe the environmental baseline in the action area  
The environmental baseline includes the past and present impacts of Federal, state, or private 
actions and other human activities in the action area on ESA-listed species. It includes the 
anticipated impacts of proposed Federal projects that have already undergone formal or early 
section 7 consultation and the impacts of state or private actions that are contemporaneous with 
the consultation in process. The environmental baseline is discussed in Section 2.4 of this 
opinion. 
 
Analyze the effects of the proposed action on both the species and their habitat 
In Section 2.5 we consider how the Proposed Action would affect the species’ abundance, 
productivity, spatial structure, and diversity (VSP parameters) and the Proposed Action’s effects 
on critical habitat features in Section 2.5.3 
 
Cumulative effects 
Cumulative effects, as defined in NMFS’ implementing regulations (50 CFR 402.02), are the 
effects of future state or private activities, not involving Federal activities, that are reasonably 
certain to occur within the action area. Future Federal actions that are unrelated to the proposed 
action are not considered because they require separate section 7 consultation. Cumulative 
effects are considered in Section 2.6 of this opinion. 
 
Integration and synthesis 
Integration and synthesis occurs in Section 2.7 of this opinion. In this step, NMFS adds the 
effects of the Proposed Action (Section 1.3) to the status of ESA protected populations in the 
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Action Area under the environmental baseline (Section 2.4) and to cumulative effects (Section 
2.6). Impacts on individuals within the affected populations are analyzed to determine their 
effects on the VSP parameters for the affected populations. These impacts are combined with the 
overall status of the MGP to determine the effects on the ESA-listed species (ESU/DPS), which 
will be used to formulate the agency’s opinion as to whether the hatchery action is likely to: (1) 
result in appreciable reductions in the likelihood of both survival and recovery of the species in 
the wild by reducing its numbers, reproduction, or distribution; or (2) reduce the value of 
designated or proposed critical habitat. 
 
Jeopardy and adverse modification  
Based on the Integration and Synthesis analysis in Section 2.7, the opinion determines whether 
the proposed action is likely to jeopardize ESA protected species or destroy or adversely modify 
designated critical habitat in Section 2.8. 
 
Reasonable and prudent alternative(s) (RPA) to the proposed action 
If NMFS determines that the action under consultation is likely to jeopardize the continued 
existence of listed species or destroy or adversely modify designated critical habitat, NMFS must 
identify a RPA or RPAs to the proposed action. 
 
Other species in action area 
ESA-listed anadromous salmonid species in the action area are described in section 2.2.1. The 
effects of take associated with implementation of Puget Sound region hatchery salmon and 
steelhead production on the Hood Canal Summer Chum Salmon ESU were previously evaluated 
and authorized by NMFS through a separate ESA section 7 consultation process (NMFS 2002a). 
An Environmental Assessment and FONSI were completed as part of the 2002 NMFS summer 
chum salmon consultation (NMFS 2002c). Effects on this ESA-listed species associated with 
implementation of the six salmon HGMPs will therefore not be discussed further in this opinion. 
 
The ESA-listed threatened Coastal-Puget Sound bull trout (Salvelinus confluentus) DPS is 
administered by the USFWS. Effects on bull trout associated with the NMFS 4(d) rule 
determination for the proposed hatchery salmon programs will be addressed through a separate 
ESA section 7 consultation with USFWS. 
 
In addition, NMFS has considered whether the proposed action would affect other ESA-listed 
species under NMFS regulatory purview, including Pacific eulachon, southern resident killer 
whales, or rockfish, and has determined that the proposed action is not likely to have a 
meaningful or measurable effect on any additional species based on the very small proportion of 
Lake Washington watershed hatchery-origin salmon produced by the proposed action in the 
Salish Sea and Pacific Ocean areas where these ESA-listed species occur. The effects of all 
hatchery releases that provide prey for ESA-listed SRKW originating from the action area 
hatcheries that are described in the proposed action , have been evaluated through a separate 
NMFS ESA consultation (NMFS 2020c) Based on this, these species will not be addressed 
further in this opinion. 
 
In analyzing the effects of the proposed actions on threatened Puget Sound Chinook salmon and 
steelhead natural populations, NMFS considers its classification of each population and the role 
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of the population in recovery of the ESU. Under the Population Recovery Approach (PRA) 
(NMFS 2010), each natural population is assigned to a tier designation based on life history, 
production and habitat indicators, and the Puget Sound Recovery Plan biological delisting 
criteria (Figure 2). NMFS applies the PRA in ESA consultations for actions affecting ESA-listed 
Chinook salmon in Puget Sound (e.g., (NMFS 2011b; 2015c). Although recognizing 
prioritization of the 22 Puget Sound Chinook Salmon ESU populations is valuable, NMFS 
understands that there are non-scientific factors (e.g., the importance of a salmon or steelhead 
population to tribal culture and economics) that are important considerations in salmon and 
steelhead recovery. 
 
Under the PRA, Tier 1 populations are of primary importance for preservation, restoration, and 
ESU recovery. Tier 2 populations play a secondary role in recovery of the ESU and Tier 3 
populations play a tertiary role. When NMFS analyzes proposed actions, it evaluates impacts at 
the individual population scale for their effects on the viability of the ESU. Impacts on Tier 1 
populations would be more likely to affect the viability of the ESU as a whole than similar 
impacts on Tier 2 or 3 populations, because of the primary importance of Tier 1 populations to 
overall ESU viability. Both the Lake Washington Chinook salmon populations are classified 
through the approach as Tier 3 populations (NMFS 2010). The classification for these two 
Chinook salmon populations that may be affected by the proposed actions are considered in 
NMFS’s analysis with other factors (Section2.6) to derive conclusions regarding  the Lake 
Washington watershed salmon hatcheries-related effects on the Puget Sound Chinook Salmon 
ESU. 
 
2.2. Range-wide Status of the Species and Critical Habitat 

This opinion examines the status of each species and designated critical habitat that would be 
affected by the Proposed Action. The species and the designated critical habitat that are likely to 
be affected by the Proposed Action, and any existing protective regulations, are described in 
Table 8. The status is determined by the level of extinction risk that the listed species face, based 
on parameters considered in documents such as recovery plans, status reviews, and listing 
decisions. This informs the description of the species’ likelihood of both survival and recovery. 
The species status section helps to inform the description of the species’ current “reproduction, 
numbers, or distribution” as described in 50 CFR 402.02. The opinion also examines the 
condition of critical habitat throughout the designated area, evaluates the conservation value of 
the various watersheds and coastal and marine environments that make up the designated area, 
and discusses the function of the PBFs that are essential for the conservation of the species. 
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Table 8. Federal Register notices for the final rules that list species, designate critical 
habitat, or apply protective regulations to ESA-listed species considered in this 
consultation that are likely to be adversely affected. 

Species Listing Status Critical Habitat Protective 
Regulation 

Chinook salmon (O. tshawytscha) 
Puget Sound Threatened, March 

24, 1999; 64 FR 
14508 

Sept 2, 2005; 70 FR 
52630 

June 28, 2005; 70 
FR 37160 

Steelhead (O. mykiss) 
Puget Sound Threatened, May 11, 

2007; 72 FR 26722 
February 24, 2016; 

81 FR 9252 
September 25, 2008; 

73 FR 55451 

 
“Species” Definition: The ESA of 1973, as amended, 16 U.S.C. 1531 et seq. defines “species” to 
include any “distinct population segment (DPS) of any species of vertebrate fish or wildlife 
which interbreeds when mature.” To identify DPSs of salmon species, NMFS follows the 
“Policy on Applying the Definition of Species under the ESA to Pacific Salmon” (56 FR 58612, 
November 20, 1991). Under this policy, a group of Pacific salmon is considered a DPS and 
hence a “species” under the ESA if it represents an evolutionarily significant unit (ESU) of the 
biological species. The group must satisfy two criteria to be considered an ESU: (1) It must be 
substantially reproductively isolated from other con-specific population units; and (2) It must 
represent an important component in the evolutionary legacy of the species. To identify DPSs of 
steelhead, NMFS applies the joint FWS-NMFS DPS policy (61 FR 4722, February 7, 1996). 
Under this policy, a DPS of steelhead must be discrete from other populations, and it must be 
significant to its taxon. 
 
2.2.1. Status of Listed Species 

For Pacific salmon and steelhead, NMFS commonly uses four parameters to assess the viability 
of the populations that, together, constitute the species: abundance, productivity, spatial 
structure, and diversity (McElhany et al. 2000). These “viable salmonid population” (VSP) 
criteria therefore encompass the species’ “reproduction, numbers, or distribution” as described in 
50 CFR 402.02. When these parameters are collected at appropriate levels, they maintain a 
population’s capacity to adapt to various environmental conditions and allow it to sustain itself in 
the natural environment. These parameters or attributes are substantially influenced by habitat 
and other environmental conditions. 
 
“Abundance” generally refers to the number of naturally produced adults (i.e., the progeny of 
naturally spawning parents) in the natural environment. 
 
“Productivity,” as applied to viability factors, refers to the entire life cycle; i.e., the number of 
naturally spawning adults (i.e., progeny) produced per naturally spawning parental pair. When 
progeny replace or exceed the number of parents, a population is stable or increasing. When 
progeny fail to replace the number of parents, the population is declining. McElhany et al. (2000) 
use the terms “population growth rate” and “productivity” interchangeably when referring to 
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production over the entire life cycle. They also refer to “trend in abundance,” which is the 
manifestation of long-term population growth rate. 

“Spatial structure” refers both to the spatial distributions of individuals in the population and the 
processes that generate that distribution. A population’s spatial structure depends fundamentally 
on accessibility to the habitat, on habitat quality and spatial configuration, and on the dynamics 
and dispersal characteristics of individuals in the population. 
 

 
Figure 2. Populations delineated by NMFS for the Puget Sound Chinook Salmon ESU 

(SSPS 2007;(NMFS 2010)) and their assigned Population Recovery Approach tier 
status (SSPS 2007; (NMFS 2010)). Note: Dosewallips, Duckabush, and Hamma 
Hamma River Chinook salmon are aggregated as the “Mid Hood Canal” 
population. 

“Diversity” refers to the distribution of traits within and among populations. These range in scale 
from DNA sequence variation at single genes to complex life history traits (McElhany et al. 
2000). 
 
In describing the range-wide status of listed species, we rely on viability assessments and criteria 
in NMFS Technical Recovery Team (TRT) documents and NMFS recovery plans, when 
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available, that describe VSP parameters at the population, major population group (MPG), and 
species scales (i.e., salmon ESUs and steelhead DPSs). For species with multiple populations, 
once the biological status of a species’ populations and MPGs have been determined, NMFS 
assesses the status of the entire species. Considerations for species viability include having 
multiple populations that are viable, ensuring that populations with unique life histories and 
phenotypes are viable, and that some viable populations are both widespread to avoid concurrent 
extinctions from mass catastrophes and spatially close to allow functioning as meta-populations 
(McElhany et al. 2000). 
 
Researchers have looked for evidence that marine area carrying capacity can limit salmonid 
survival (Beamish et al. 1997; HSRG 2004a). Some evidence suggests density-dependence in the 
abundance of returning adult salmonids (Emlen et al. 1990; Lichatowich et al. 1993; Bradford 
1995), is associated with cyclic ocean productivity (Nickelson et al. 1986; Beamish and Bouillon 
1993; Beamish et al. 1997). (Naish et al. 2008a)could find no systematic, controlled study of the 
effects of density on natural-origin salmon, or of interactions between natural- and hatchery-
origin salmon, nor on the duration of estuarine residence and survival of salmon. The Salish Sea 
marine ecosystem was until recently believed to be stable, internally regulated and largely 
deterministic. The current view is that Puget Sound is dynamic, with much environmental 
stochasticity and ecological uncertainty (Mahnken et al. 1998; Francis 2002b). The same is true 
for estuaries. At best, during years of limited food supply, juvenile fish survival and size may be 
reduced. Thus, the influence of density-dependent interactions on growth and survival is likely 
small compared with the effects of large scale and regional environmental conditions. 
 
2.2.1.1. Life History of Chinook Salmon ESU 

Chinook salmon, Oncorhynchus tshawytscha, exhibit a wide variety of life history patterns that 
include: variation in age at seaward migration; length of freshwater, estuarine, and oceanic 
residence; ocean distribution; ocean migratory patterns; and age and season of spawning 
migration. Two distinct races of Chinook salmon are generally recognized: “stream-type” and 
“ocean-type” (Healey 1991; Myers et al. 1998). The Proposed Action evaluates programs that 
produce “ocean-type” Chinook, which have very different characteristics compared to the 
“stream type”. Ocean-type Chinook salmon reside in coastal ocean waters for 3 to 4 years 
compared to stream-type Chinook salmon that spend 2 to 3 years and exhibit extensive offshore 
ocean migrations. The ocean-type salmon also enter freshwater later (June through August), 
upon returning to spawn, compared to the stream-type (March through July) (Myers et al. 1998). 
Ocean-type Chinook salmon use different areas – they spawn and rear in lower elevation 
mainstem rivers and they typically reside in fresh water for no more than 3 months compared to 
spring Chinook salmon that spawn and rear high in the watershed and reside in freshwater for a 
year. 
 
Status of the species is determined based on the abundance, productivity, spatial structure, and 
diversity of its constituent natural populations. Based on best available scientific information, 
including these parameters that are indicators of species viability, NMFS determined that the 
Puget Sound Chinook Salmon ESU was a threatened species in 1999 (64 FR 14508). Since the 
time of listing, only three complete generations of Chinook salmon have returned, and the ESU 
remains at high risk and threatened in status (Ford et al. 2011; NWFSC 2015). 
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The NMFS adopted the recovery plan for Puget Sound Chinook salmon on January 19, 2007 (72 
FR 2493). The recovery plan consists of two documents: the Puget Sound Salmon Recovery Plan 
prepared by the Shared Strategy for Puget Sound and NMFS’ Final Supplement to the Shared 
Strategy Plan (NMFS 2006b; SSPS 2007). The Recovery Plan describes the ESU's population 
structure, identifies populations essential to recovery of the ESU, establishes recovery goals for 
most of the populations, and recommends habitat, hatchery and harvest actions designed to 
contribute to the recovery of the ESU. It adopts ESU and population level viability criteria 
recommended by the Puget Sound Technical Recovery Team (PSTRT) (Ruckelshaus et al. 
2006). The PSTRT’s Biological Recovery Criteria will be met when the following conditions are 
achieved: 
 

1. All watersheds improve from current conditions, resulting in improved status for the 
species; 

2. At least two to four Chinook salmon populations in each of the five biogeographical 
regions of Puget Sound attain a low risk status over the long-term;  

3. At least one or more populations from major diversity groups1 
historically present in 

each of the five Puget Sound regions attain a low risk status; 

4. Tributaries to Puget Sound not identified as primary freshwater habitat for any of the 
22 identified populations are functioning in a manner that is sufficient to support an ESU-
wide recovery scenario; 

5. Production of Chinook salmon from tributaries to Puget Sound not identified as 
primary freshwater habitat for any of the 22 identified populations occurs in a manner 
consistent with ESU recovery. 
 

Spatial Structure and Diversity. The PSTRT determined that 22 historical populations currently 
contain Chinook salmon and grouped them into five biogeographical regions (BGRs), based on 
consideration of historical distribution, geographic isolation, dispersal rates, genetic data, life 
history information, population dynamics, and environmental and ecological diversity (Table 9).  
Based on genetic and historical evidence reported in the literature, the PSTRT also determined 
that there were 16 additional spawning aggregations or populations in the Puget Sound Chinook 
Salmon ESU that are now putatively extinct2 (Ruckelshaus et al. 2006). The Puget Sound 
Chinook salmon ESU includes all naturally spawned Chinook salmon originating from rivers 
flowing into Puget Sound from the Elwha River (inclusive) eastward, including rivers in Hood 
Canal, South Sound, North Sound and the Strait of Georgia. Per the Federal Register (79 FR 
20802), Chinook salmon from the following 26 artificial propagation programs are also included 
in the listing: the Kendall Creek Hatchery Program; Marblemount Hatchery Program (spring 
subyearlings and summer-run); Harvey Creek Hatchery Program (summer-run);  Whitehorse 
Springs Pond Program; Wallace River Hatchery Program (yearlings and subyearlings); Tulalip 
                                                 
1 Major diversity groups of Chinook salmon are identified based on run timing, age distribution, and migration 
patterns.  For example, early returning and late returning populations of adult Chinook salmon represent two types 
of major diversity groups that may be present within a biogeographical region.   
2 It was not possible in most cases to determine whether these Chinook salmon spawning groups historically 
represented independent populations or were distinct spawning aggregations within larger populations.   
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Bay Program; Issaquah Hatchery Program; Soos Creek Hatchery Program; Icy Creek Hatchery 
Program; Keta Creek Hatchery Program; White River Hatchery Program; White Acclimation 
Pond Program; Hupp Springs Hatchery Program; Voights Creek Hatchery Program; Diru Creek 
Program; Clear Creek Program; Kalama Creek Program; George Adams Hatchery Program; 
Rick’s Pond Hatchery Program; Hamma Hamma Hatchery Program; Dungeness/Hurd Creek 
Hatchery Program; Elwha Channel Hatchery Program; and the Skookum Creek Hatchery Spring-
run Program. 
 
2.2.1.2. Puget Sound BGR Population 

Chinook Salmon populations in Puget sound were listed as an Evolutionary Significant Unit by 
NMFS following the 1998 status review ( FR March 9 1998).  NMFS has convened recovery 
planning efforts across the Pacific Northwest to identify what actions are needed to recover listed 
salmon and steelhead. A recovery plan for the Puget Sound Chinook ESU was completed in 2007 (72 
FR 2493, January 19, 2007). The recovery plan consists of two documents: the Puget Sound 
Salmon Recovery Plan prepared by the Shared Strategy for Puget Sound and NMFS’ Final 
Supplement to the Shared Strategy Plan (NMFS 2006b; SSPS 2007). It describes the ESU's 
population structure, identifies populations essential to recovery of the ESU, establishes recovery 
goals for most of the populations, and recommends habitat, hatchery, and harvest actions 
designed to contribute to the recovery of the ESU (NMFS 2006b; SSPS 2007). The recovery plan 
adopts ESU and population level viability criteria recommended by the Puget Sound Technical 
Recovery Team (PSTRT) (Ruckelshaus et al. 2002; Ruckelshaus et al. 2006). 
 
The PSTRT identified 22 historical natural populations of Chinook salmon and grouped them 
into five biogeographical regions (BGRs; (SSPS 2007). The ESU encompasses all runs of 
Chinook salmon from rivers and streams flowing into Puget Sound, the boundary of the ESU 
extends from the Nooksack River and the Strait of Georgia in the north, the Strait of Juan de 
Fuca from the Elwha River eastward, and rivers and streams flowing into Hood Canal, South 
Sound, North Sound (FR 20802,Figure 3). 
 
The Technical Recovery Team (TRT) did not define the relative roles of the remaining 
populations in the Whidbey and Central/South Sound Basins for ESU viability. Therefore, 
NMFS developed additional guidance, the Population Recovery Approach, which considers 
distinctions in genetic legacy and watershed condition among other factors in assessing the risks 
to survival and recovery of the listed species by the proposed actions across all populations 
within the Puget Sound Chinook ESU. This approach carries forward the biological viability and 
delisting criteria described in the Supplement to the Puget Sound Salmon Recovery Plan 
(Ruckelshaus et al. 2002; NMFS 2006b(NMFS 2006a)), and was used to classify Puget Sound 
Chinook salmon populations into three tiers (Figure 3) (NMFS 2006b; 2010).  The assigned tier 
indicates the relative role of each of the 22 populations comprising the ESU to the viability of the 
ESU and its recovery. Impacts on tier one populations would be more likely to affect the 
viability of the ESU as a whole.  NMFS has incorporated this approach in previous ESA section 
4(d) determinations and opinions on Puget Sound Chinook (Table 9).  Sammamish and Cedar 
rivers support tier three populations of Chinook salmon (Figure 3). 
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Table 9. Extant Puget Sound Chinook salmon populations by biogeographical region 
(NMFS 2006b). 

Biogeographical Region Population (Watershed) 
Strait of Georgia North Fork Nooksack River 

South Fork Nooksack River 
Strait of Juan de Fuca Elwha River 

Dungeness River 
Hood Canal Skokomish River 

Mid Hood Canal River 
Whidbey Basin Skykomish River (late) 

Snoqualmie River (late) 
North Fork Stillaguamish River (early) 
South Fork Stillaguamish River (moderately 

 Upper Skagit River (moderately early) 
Lower Skagit River (late) 
Upper Sauk River (early) 
Lower Sauk River (moderately early) 
Suiattle River (very early) 
Upper Cascade River (moderately early) 

Central/South Puget Sound 
Basin 

Cedar River (late) 
Sammamish River (late) 
Green/Duwamish River (late) 
Puyallup River (late) 
White River (early) 
Nisqually River (late) 

NOTE: At least one other population of each race within the Whidbey Basin (one each of the early, 
moderately early and late spawn-timing) and Central/South Puget Sound Basin (one late spawn-timing) 
regions would need to be viable for recovery of the ESU. 

 
Indices of spatial distribution and diversity have not been developed at the population level, 
though diversity at the ESU level is declining. Abundance is becoming more concentrated in 
fewer populations and regions within the ESU. The Whidbey Basin Region is the only region 
with consistently high fraction natural-origin spawner abundance, in six of the 10 populations 
within the Region.  All other regions have moderate to high proportions of hatchery-origin 
spawners (Figure 3). 
 
In general, the Strait of Juan de Fuca, Georgia Basin, and Hood Canal regions are at greater risk 
than the other regions due to critically low natural abundance and/or declining growth rates of 
the populations in these regions. In addition, spatial structure, or geographic distribution, of the 
White, Skagit, Elwha, and Skokomish populations has been substantially reduced or impeded by 
the loss of access to the upper portions of those tributary basins due to flood control activities 
and hydropower development. Habitat conditions conducive to salmon survival in most other 
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Abundance and Productivity  

 Trends in long-term growth rate of natural-origin escapement are generally higher than growth rate 
of natural-origin recruitment (i.e., abundance prior to fishing) indicating some stabilizing influence 
on escapement, possibly from past reductions in fishing-related mortality (Table 10). Since 1990, 13 
populations show long-term growth rates that are at or above replacement for natural-origin 
escapement including populations in four of five regions. Currently, only five populations, in two 
regions, show long-term neutral to positive growth rates in natural-origin recruitment (Table 10). 
Additionally, most populations are consistently well below the productivity goals identified in the 
recovery plan. Although trends vary for individual populations across the ESU, currently 20 
populations exhibit a stable or increasing trend in natural escapement (Table 10). Thirteen of the 
22 populations exhibit a stable or increasing long-term trend in total natural escapement over the 
18-year geometric mean (NMFS 2020a). 
 
This updated trend analysis is based on the addition of three years of escapement data including 
natural-origin escapement, which are only available for the more recent return years for several 
populations (Elwha, Dungeness, SF fall-run Stillaguamish, Lake Washington, Cedar River, and 
Nisqually). With the addition of these data, natural-origin escapement trends indicate an 
improvement over the status as reported in the NWFSC 2021 status update and was the best 
available information at the time of the completion of previous opinions (NMFS 2016d; 2017a). 
 
As of 2020 there are 24 artificial propagation programs producing Chinook salmon that are 
included as part of the listed ESU (71 FR 20802, April 14, 2014). Indices of spatial distribution 
and diversity have not been developed at the population level, though diversity at the ESU level 
is declining (NWFSC, 2021). 
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Figure 3. Map of the Puget Sound Chinook salmon ESU’s spawning and rearing areas, 

illustrating populations and major population groups. Source: NWFSC 2015. 
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Table 10. Estimates of escapement and productivity (recruits/spawner) for Puget Sound Chinook populations. Natural-origin escapement 
information is provided where available. Populations at or below their critical escapement threshold are bolded. For several 
populations, hatchery contribution to natural spawning data are limited or unavailable (NMFS 2021b). 
Region  

Population 
 

1999 to 2018 
Geometric mean 

Escapement (Spawners) 

NMFS Escapement 
Thresholds 

Recovery Planning 
Abundance Target 

in Spawners 
(productivity)1 

Average % 
hatchery fish in 

escapement 1999-
2018 (min-max2) 

Natural3  Natural-Origin 
(Productivity1) 

Critical4 Rebuilding5 

Georgia Basin Nooksack MU  1,798 236 400 500   
NF Nooksack  1,537 180 (0.3) 2006 - 3,800 (3.4) 85 (63-97) 
SF Nooksack 266 56 (1.9) 2006 - 2,000 (3.6) 51 (19-82) 

Whidbey/Main Basin Skagit Summer/Fall MU       
Upper Skagit River  9,349 8,314 (2.7) 738 5,740 5,380 (3.8) 11 (2-36) 
Lower Sauk River  560 531 (3.1) 2006 371 1,400 (3.0) 5 (0-33) 
Lower Skagit River 2,090 1,845 (2.8) 281 2,131 3,900 (3.0) 9 (0-23) 
Skagit Spring MU       
Upper Sauk River  633 624 (2.2) 130 470 750 (3.0) 1 (0-5) 
Suiattle River  379 372 (2.0) 170 223 160 (2.8) 2 (0-7) 
Upper Cascade River 289 260 (1.5) 130 148 290 (3.0) 7(0-25) 
Stillaguamish MU       
NF Stillaguamish R. 1,029 472 (0.9) 300 550 4,000 (3.4) 51 (25-80) 
SF Stillaguamish R.  122 58 (1.2) 2006 300 3,600 (3.3) 48 (9-79) 
Snohomish MU       
Skykomish River 3,193 2,212 (1.5) 400 1,491 8,700 (3.4) 28 (0-62) 

Snoqualmie River 1,449 1,182 (1.3) 400 816 5,500 (3.6) 18 (0-35) 
Central/South Sound Cedar River 924 659 (2.7) 2006 2827 2,000(3.1) 28 (10-50) 

Sammamish River 1,073 161 (0.5) 2006 1,2506 2,000(3.1) 80 (36-96) 
Duwamish-Green R. 4,014 1,525 (1.4) 400 1,700 1,000(3.0) 59 (27-79) 
White River8 1,859 625 (0.8) 2006 4887 - 59 (14-90) 

Puyallup River9 1,646 784 (1.2) 2006 7977 - 54 (19-83) 

Nisqually River 1,670 621 (1.5) 2006 1,20010 5,300 (2.3) 56 (17-87) 

Hood Canal Skokomish 1,398 282 (0.8) 452 1,160 - 71 (7-96) 
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Mid-Hood Canal Rivers11 187  2006 1,2506 1,300 (3.0) 36 (2-87) 

Strait of Juan de 
Fuca 

Dungeness River Elwha 
River12 

411 
1,231 

98 (1.0) 
171 

2006 
2006 

925 
1,2506 

1,200 (3.0) 
6,900 (4.6) 

72 (39-96) 
74 (31-98) 

1 Source productivity is Abundance and Productivity Tables from NWFSC database; measured as the mean of observed recruits/observed spawners through brood year 2015 except: SF Nooksack 
through brood year 2013; and NF and SF Stillaguamish, Sammamish, Cedar, Duwamish-Green, Puyallup, White, Snoqualmie, Skykomish, through brood year 2016.  Sammamish productivity 
estimate has not been revised to include Issaquah Creek. Source for Recovery Planning productivity target is the final supplement to the Puget Sound Salmon Recovery Plan (NMFS 2006b) measured 
as recruits/spawner associated with the number of spawners at Maximum Sustained Yield under recovered conditions. 
2 Estimates of the fraction of hatchery fish in natural spawning escapements are from the Abundance and Productivity Tables from NWFSC database; measured as mean and range for 
1999-2018. Estimates represent hatchery fraction through 2019 for: NF and SF Stillaguamish, Skykomish, Snoqualmie, Cedar, Duwamish-Green, White, Puyallup, and Elwha) ((WDFW and PSTIT 
2005; 2006; 2007; 2008; 2009; 2010; 2011; 2012; 2013; 2014; 2015; 2016; 2017; James and Dufault 2018) 
3 Includes naturally spawning hatchery fish Includes naturally spawning hatchery fish (estimates represent 1999-2019 geo-mean for: NF and SF Stillaguamish, Skykomish, Snoqualmie, Cedar, 
Duwamish-Green, White, Puyallup, and Elwha). 
4Critical natural-origin escapement thresholds under current habitat and environmental conditions ((McElhany et al. 2000; NMFS 2018a). 
5 Rebuilding natural-origin escapement thresholds under current habitat and environmental conditions (McElhany et al. 2000; (NMFS 2018a) 
6 Based on generic VSP guidance (McElhany et al. 200). 
7 Based on spawner-recruit assessment (NMFS 2021a) 
8 Captive broodstock program for early run Chinook salmon ended in 2000; estimates of natural spawning escapement include an unknown fraction of naturally spawning hatchery-origin fish from 
late- and early run hatchery programs in the White and Puyallup River basins.  
9 South Prairie index area provides a more accurate trend in the escapement for the Puyallup River because it is the only area in the Puyallup River for which spawners or redds can be consistently 
counted (WDFW and PSTIT 2010). 
10 Based on alternative habitat assessment. 
11 Estimates of natural escapement do not include volitional returns to the hatchery or those hatchery or natural-origin fish gaffed or seined from spawning grounds for supplementation program 
broodstock collection 
12 Differences in results reported in Tables 5 and 6 from those in the most recent status review (Tables 3 and 4, above) are related to the data source, method, and time period analyzed (e.g., 5-year vs 
20-year estimates). 
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Limiting factors 
 
Limiting factors described in (SSPS 2007) and reiterated in (NMFS 2006b) include: 

● Degraded nearshore and estuarine habitat: Residential and commercial development has 
reduced the amount of functioning nearshore and estuarine habitat available for salmon 
rearing and migration. The loss of mudflats, eelgrass meadows, and macroalgae further 
limits salmon foraging and rearing opportunities in nearshore and estuarine areas.  

● Degraded freshwater habitat: Floodplain connectivity and function, channel structure and 
complexity, riparian areas and large wood supply, stream substrate, impaired passage 
conditions and water quality have been degraded for adult spawning, embryo incubation, 
and rearing as a result of cumulative impacts of agriculture, forestry, and development.  
Some improvements have occurred over the last decade for water quality and removal of 
forest road barriers. 

● Anadromous salmonid hatchery programs: Salmon and steelhead released from Puget 
Sound hatcheries operated for harvest augmentation purposes pose ecological, genetic, 
and demographic risks to natural-origin Chinook salmon populations. The risk to the 
species’ persistence that may be attributable to hatchery-related effects has decreased 
since the last Status Review, based on hatchery risk reduction measures that have been 
implemented, and new scientific information regarding genetic effects noted above 
(NWFSC 2015). Improvements in hatchery operations associated with on-going ESA 
review and determination processes are expected to further reduce hatchery-related risks.  

● Salmon harvest management: Total fishery exploitation rates have decreased 
substantially since the late 1990s when compared to years prior to listing (average 
reduction = -33%, range = -67 to +30%) (New FRAM base period validation results, 
August 2017), but weak natural-origin Chinook salmon populations in Puget Sound still 
require enhanced protective measures to reduce the risk of overharvest. The risk to the 
species’ persistence because of harvest remains the same since the last status review for 
all three species. Increased harvest from the Canadian WCVI fisheries has impacted most 
Puget Sound populations. Further, there is greater uncertainty associated with this threat 
due to shorter term harvest plans and exceedance of management objectives for some 
Chinook salmon populations essential to recovery. 

● Concerns regarding existing regulatory mechanisms: Existing regulatory mechanisms 
regarding water and land-use raise some concerns, including lack of documentation or 
analysis of the effectiveness of land-use regulatory mechanisms and land-use 
management plans, lack of reporting and enforcement for some regulatory programs, and 
certain Federal, state, and local land and water use decisions that continue to occur 
without the benefit of ESA review. State and local decisions have no Federal nexus to 
trigger the ESA Section 7 consultation requirement, and thus certain permitting actions 
allow direct and indirect species take and/or adverse habitat effects. 

 
The severity and relative contribution of these factors varies by natural population. In addition, 
cycles or variability in environmental conditions affecting plant and animal communities—for 
example, increased predator abundances and decreased food resources in ocean rearing areas— 
likely have contributed to declines in fish populations in Puget Sound.  For a comprehensive 
treatment of all limiting factors, please see Section Error! Reference source not found., 
Environmental Baseline. 
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2.2.1.3. Cedar and Sammamish Chinook populations 

The Central/South Sound BGR contains six Chinook salmon populations and most are genetically 
similar, reflecting the extensive influence of transplanted hatchery releases, primarily from the 
Duwamish-Green River population (Council 2017). Except for the White River, Chinook populations 
in this region exhibit a fall type life history.  The six populations constitute five management units: 
Lake Washington (Cedar and Sammamish), Duwamish-Green, White, Puyallup, and Nisqually. 
Hatchery contribution to spawning escapement is moderate to high for the populations within this 
region. The Cedar, Sammamish, populations are in PRA Tier 3. The basins in the Central/South 
Sound region are the most urbanized and some of the most degraded in the ESU (SSPS 2005). The 
lower reaches of all these systems flow through lowland areas that have been developed for 
agricultural, residential, urban, or industrial use. Much of the watersheds or migration corridors for 
five of the six populations in the region are within the cities of Tacoma or Seattle or their 
metropolitan environments (Sammamish, Cedar, Duwamish-Green, Puyallup, and White). Natural 
production is limited by stream flows, physical barriers, poor water quality, elimination of intertidal 
and other estuarine nursery areas, and limited spawning and rearing habitat related to timber harvest 
and residential, industrial, and commercial development, as well as several dams limiting upper 
watershed access (Cedar, Duwamish-Green, Puyallup/White, and Nisqually). 
 
Except for the Sammamish population, average natural-origin escapements since 1999 are well above 
their critical thresholds (Table 10). Rebuilding escapement thresholds were updated for the Cedar 
river in 2017 and 2018 based on new spawner-recruit analysis. Average natural-origin escapement in 
the Cedar exceeds those rebuilding escapement thresholds; observed productivity is 1.0.  Total 
escapement trends are stable or increasing for all populations within the region except for the 
Puyallup River, which is declining (Table 10Table 13). Growth rates for recruits and escapement are 
mixed for the Cedar and Sammamish. Furthermore, natural-origin spawning escapements in 2019 are 
expected to be above the critical threshold for all of the populations except for the Sammamish 
(Table 10Table 13). The additional contribution of hatchery spawners to natural escapement for 
most of these populations should mitigate demographic risk. 
 
Juveniles enter the lake from mid-January through late June (Koehler et al. 2006; Lisi 2019).  There 
are two distinct juvenile Chinook salmon rearing life-histories that have been identified in the Lake 
Washington watershed. The early fish are < 50 mm and spend a few days in stream habitats before 
entering the lake January through March (peaking in mid-February).  The late fish rear in tributary 
streams for several weeks before migrating to the lake April through late June, with the peak 
occurring in mid-May (Koehler et al. 2006).  Most juveniles leave Lake Washington and enter Puget 
Sound in June and July (DeVries et al. 2004). 
 
In the Sammamish River, Chinook primarily spawn in Bear Creek with intermittent spawning in 
Little Bear Creek.  Approximately 10.0 of the 13.4 miles of Bear Creek are accessible to Chinook, 
most spawning occurs between RM 4.3 and 8.8.  Spawning occurs in the lower 3.5 miles of Cottage 
Lake Creek, a tributary to Bear Creek.  In Little Bear Creek, there is 3.8 miles of spawning habitat.  
No Chinook spawning occurs in the Sammamish River mainstem due to a lack of suitable habitat in 
the low-gradient, heavily silted channel. 
 
Juvenile Chinook trapping occurs in both the Cedar River and Bear Creek (Kiyohara 2013).  From 
1998 – 2013, the proportion of juveniles emigrating as fry averaged 79% in the Cedar River but 
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ranged from 34 – 98%. Conversely, fry emigration in Bear Creek averaged 19% and ranged from 4-
56%. The remainder of emigrants were parr in both systems as no yearlings were encountered. 
 
2.2.1.4. Status of Critical Habitat for Puget Sound Chinook Salmon 

Critical habitat for the Puget Sound Chinook ESU was designated on September 2, 2005, and 
includes localized estuarine areas and specific river reaches associated with the following 
subbasins: Strait of Georgia, Nooksack, Upper Skagit, Sauk, Lower Skagit, Stillaguamish, 
Skykomish, Snoqualmie, Snohomish, Lake Washington, Duwamish, Puyallup, Nisqually, 
Deschutes, Skokomish, Hood Canal, Kitsap, and Dungeness/Elwha (70 FR 52630, September 2, 
2005). The designation also includes some nearshore areas extending from extreme high water 
out to a depth of 30 meters and adjacent to watersheds occupied by the 22 extant natural 
populations because of their importance to rearing and migration for Chinook salmon and their 
prey, but does not otherwise include offshore marine areas. There are 61 watersheds within the 
range of this ESU. Twelve watersheds received a low rating, nine received a medium rating, and 
40 received a high rating of conservation value to the ESU (NMFS 2005a). Nineteen nearshore 
marine areas also received a rating of high conservation value. Of the 4,597 miles of stream and 
nearshore habitat eligible for designation, 3,852 miles are designated critical habitat (NMFS 
2005b) 
 
NMFS determines the range-wide status of critical habitat by examining the condition of its 
primary constituent elements (PCEs) identified when the critical habitat was designated. These 
features are essential to the conservation of the listed species because they support one or more 
of the species’ life stages (e.g., sites with conditions that support spawning, rearing, migration 
and foraging).  PCEs for Puget Sound Chinook salmon (70 FR 52731, September 2, 2005), 
including general categories of: (1) water quantity, quality, and forage to support spawning, rearing, 
individual growth, and maturation; (2) areas free of obstruction and excessive predation; and (3) the 
type and amount of structure and rugosity that supports juvenile growth and mobility. 
 
Major management activities affecting PCEs are forestry, grazing, agriculture, channel/bank 
modifications, road building/maintenance, urbanization, sand and gravel mining, dams, irrigation 
impoundments and withdrawals, river, estuary and ocean traffic, wetland loss, and forage 
fish/species harvest. NMFS has completed several section 7 consultations on large scale habitat 
projects affecting listed species in Puget Sound. Among these are the Washington State Forest 
Practices Habitat Conservation Plan (NMFS 2006a), and consultations on Washington State 
Water Quality Standards (NMFS 2008a), the National Flood Insurance Program (NMFS 2008b), 
the Washington State Department of Transportation Preservation, Improvement and Maintenance 
Activities (NMFS 2013b), and the Elwha River Fish Restoration Plan (Ward et al. 2008). These 
documents provide a more detailed overview of the status of critical habitat in Puget Sound and 
are incorporated by reference here. 
 
 
2.2.1.5. Life History of Steelhead 

Oncorhynchus mykiss has an anadromous form, commonly referred to as steelhead. Steelhead 
differ from other Pacific salmon in that they can be anadromous or freshwater residents and can 
yield offspring of the alternate life history form. O. mykiss may spawn more than once during 
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their life span (iteroparous) whereas the Pacific salmon species generally spawn once and die 
(semelparous).  Steelhead can be divided into two basic reproductive ecotypes, based on the state 
of sexual maturity at the time of river entry and duration of spawning migration (Quinn 2005).  
Summer-run steelhead enter freshwater at an early stage of maturation beginning in the late 
spring, migrate to headwater areas and hold until spawning in the winter and following spring. 
Winter steelhead typically enter freshwater at an advanced stage of maturation later in the year 
and spawn in the winter and spring (Busby et al. 1996; Hard et al. 2007). 
 
2.2.1.6. Puget Sound Steelhead 

The Puget Sound steelhead distinct population segment (DPS) includes more than 50 stocks of 
summer- and winter-run fish, the latter being the most widespread and numerous (WDFW 2002). 
Resident O. mykiss occur within the range of Puget Sound steelhead, but are not part of the DPS 
due to key differences in physical, physiological, ecological, and behavioral characteristics (71 
FR 15666; March 29 2006). Puget Sound steelhead are dominated by the winter life history 
ecotype and typically migrate as smolts to sea at age two. Seaward emigration occurs from April 
to mid-May, with fish typically spending one to three years in the ocean before returning to 
freshwater. They migrate directly offshore during their first summer, and move southward and 
eastward during the fall and winter (Hartt and Dell 1986). Adults return from December to May, 
and peak spawning occurs from March through May. Summer steelhead adults return from May 
through October and peak spawning occurs the following January to May (Hard et al. 2007) . 
Temporal overlap exists in spawn timing between the two life history ecotypes, particularly in 
northern Puget Sound where both summer and winter steelhead are present, although summer 
steelhead typically spawn farther upstream above obstacles that are largely impassable to winter 
steelhead (Withler 1966; Behnke and American Fisheries Society 1992; Busby et al. 1996). 
 
The Puget Sound Steelhead DPS was listed as threatened on May 11, 2007 (72 FR 26722). The 
DPS includes all naturally spawned anadromous winter- and summer-run steelhead populations 
within the river basins of the Strait of Juan de Fuca, Puget Sound, and Hood Canal, Washington, 
bounded to the west by the Elwha River (inclusive) and to the north by the Nooksack River and 
Dakota Creek (inclusive). Also included as part of the ESA-listed DPS are six hatchery-origin 
stocks derived from local natural steelhead populations and produced for conservation purposes 
(79 FR 20802, April 14, 2014). Puget Sound steelhead populations are aggregated into three 
extant Major Population Groups (MPGs) containing a total of 32 Demographically Independent 
Populations (DIPs) based on genetic, environmental, and life history characteristics (Myers et al. 
2015). The draft 2020 NWFSC biological status review((NMFS 2020d) states that a third of the 
32 Puget Sound steelhead populations continue to lack monitoring and abundance data, and in 
most cases it is likely that abundances are very low. 
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Figure 4. Map of the Puget Sound Steelhead DPS’s spawning and rearing areas, identifying 

32 demographically independent populations (DIPs) within 3 major population 
groups (MPGs).  The 3 steelhead MPGs are Northern Cascades, Central & South 
Puget Sound, and Hood Canal & Strait of Juan de Fuca.  Source (NMFS 2020b). 

 
Abundance and Productivity 
 
Since publication of the NWFSC report in 2015, and drafting of the 2020 NWFSC biological 
status review, there have been reductions in hatchery programs founded from non-listed and out-
of-DPS stocks (i.e., Skamania). In addition, the fraction of out-of-DPS hatchery steelhead 
spawning naturally are low for many rivers (NWFSC 2015). The fraction of natural-origin 
steelhead spawners was 0.9 or greater for the 2005-2009 and 2010-2014 time periods for all 
populations where data was available except the Snoqualmie and Stillaguamish Rivers. For 17 of 
22 DIPs across the DPS, the five-year average for the fraction of natural-origin steelhead 
spawners exceeded 0.75 from 2005 to 2009; this average was near 1.0 for 8 populations, where 
data were available, from 2010 to 2014 (NWFSC 2015). However, the fraction of natural-origin 
steelhead spawners could not be estimated for a substantial number of DIPs during the 2010 to 
2014 period, or for the most recent 2015 – 2019 timeframe (NWFSC 2015). In some river 
systems, such as the Green River, Snohomish/Skykomish Rivers, and the Stillaguamish Rivers, 
these estimates were higher than some guidelines recommend (e.g., no more than 5% hatchery-
origin spawners on spawning grounds for isolated hatchery programs (HSRG 2009) over the 
2005- 2009 and 2010 – 2014 timeframes. The draft 2020 NWFSC biological status review 
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(NWFSC 2020) states that a third of the 32 Puget Sound steelhead populations continue to lack 
monitoring and abundance data, and in most cases it is likely that abundances are very low.  
More information on Puget Sound steelhead spatial structure and diversity can be found in 
NMFS’s PSSTRT viability report and NMFS’s status review update on salmon and steelhead 
(NWFSC 2015; 2020). 
 
However, since 2015, fifteen of the 21 populations indicate small to substantive increases in 
abundance (Table 11). However, most steelhead populations remain small. From 2014 to 2019, 
nine of the 21 steelhead populations had fewer than 250 natural spawners annually, and 12 of the 
21 steelhead populations had 500 or fewer natural spawners (Table 11). 
 

Table 11. Five-year geometric mean of raw natural spawner counts for Puget Sound 
steelhead. This is the raw total spawner count times the fraction natural estimate, if 
available. In parentheses, the 5-year geometric mean of raw total spawner counts is 
shown. A value only in parentheses means that a total spawner count was available 
but none or only one estimate of natural spawners was available. The geometric 
mean was computed as the product of counts raised to the power 1 over the number 
of counts available (2 to 5). A minimum of 2 values was used to compute the 
geometric mean. Percent change between the most recent two 5-year periods is 
shown on the far right. MPG, major population group; NC, Northern Cascades, 
SCC South and Central Cascades, HCSJF, Hood Canal and Strait of Juan de Fuca, 
W, winter run; S, summer run (NWFSC 2015). 

 

 
MPG 

 
Run 

Population 1990-
1994 

1995- 
1999 

2000- 
2004 

2005- 
2009 

2010- 
2014 

2015-
2019 

% 
Change 

Northern 
Cascades 

Winter Nooksack River -- --  
-- 

-- 1745 
(1745) 

1906 
(1906) 

9(9) 

 Pilchuck River 1225 
(1225) 

 

1465 
(1465) 

604 
(604) 

597 
(597) 

626 
(626) 

638 
(638) 

 

2 
(2) 

 Samish 
River/Bellingham Bay 

316 
(316) 

 

717 
(717) 

 

852 
(852) 

 

535 
(535) 

 

748 
(748) 

 

1305 
(1305) 

 

74 
(74) 

 

 Skagit River 7202 
(7202) 

 

7656 
(7656) 

 

5419 
(5419) 

 

4677 
(4677) 

 

6391 
(6391) 

 

7181 
(7181) 

 

12 
(12) 

 

 Snohomish/Skykomish 
River 

3629 
(3629) 

 

3687 
(3687) 

 

1718 
(1718) 

 

2942 
(2942) 

 

975 
(975) 

 

690 
(690) 

 

-29 
(-29) 

 

 Snoqualmie River 1831 
(1831) 

 

2056 
(2056) 

 

1020 
(1020) 

 

1250 
(1250) 

 

706 
(706) 

 

500 
(500) 

 

-29 
(-29) 

 

 Stillaguamish River 1078 
(1078) 

 

1166 
(1166) 

 

550 
(550) 

 

327 
(327) 

 

386 
(386) 

 

487 
(487) 

 

26 
(26) 

 

Summer Tolt River        

Central/ 
South PS 

Winter Cedar River 241 
(241) 

 

295 
(295) 

 

37 
(37) 

12 
(12) 

4 
(4) 

6 
(6) 

 

50 
(50) 

 

 Green River 2062 
(2062) 

 

2585 
(2585) 

 

1885 
(1885) 

 

1045 
(1045) 

 

662 
(662) 

 

1282 
(1282) 

 

94 
(94) 

 

 Nisqually River 1200 
(1200) 

 

754 
(754) 

 

409 
(409) 

 

446 
(446) 

 

477 
(477) 

 

1368 
(1368) 

 

187 
(187) 

 

 N. Lk WA/Lk 
Sammamish 

 298 
(298) 

37 
(37) 

12 
(12) 

--  -- 

 Puyallup River/Carbon 
River 

199 
(199) 

 

196 
(196) 

 

93 
(93) 

 

72 
(72) 

 

85 
(85) 

 

201 
(201) 

 

136 
(136) 

 

 White River 169 
(169) 

 

183 
(183) 

 

147 
(147) 

 

57 
(57) 

 

79 
(79) 

 

182 
(182) 

 

130 
(130) 
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Hood 
Canal/ 
SJF 

Winter Dungeness River 356 
(356) 

 

   517 
(517) 

 

408 
(408) 

 

-21 
(-21) 

 

 East Hood Canal 
Tribs. 

27 
(27) 

 

21 
(21) 

 

25 
(25) 

 

37 
(37) 

 

60 
(60) 

 

93 
(93) 

 

55 
(55) 

 

 Elwha River     680 
(680) 

 

1241 
(1241) 

 

82 
(82) 

 

 Sequim/Discovery        
 
 
Steelhead productivity has been variable for most populations since the mid-1980s (Figure 4). 
Since around 2000, productivity has fluctuated around replacement for Puget Sound steelhead 
populations, but the majority have predominantly been below replacement (NWFSC 2015). 
Some steelhead populations have shown signs of productivity that has been above replacement in 
the most recent years for which data are available (2015-2019) (Figure 4). Steelhead populations 
with productivity estimates above replacement include the Samish River, Nooksack River, and 
Skagit River winter-run in the Northern Cascades MPG, the Nisqually River, White River, 
Puyallup River, Green River, and Cedar River winter-run in the Central and South Puget Sound 
MPG, and the Elwha River, East, West, and South Hood Canal Tributaries, and Skokomish 
River winter-run steelhead populations in the Hood Canal and Strait of Juan de Fuca MPG. 
 
Limiting Factors 
 
Factors limiting steelhead recovery: 

● In addition to being a factor that contributed to the present decline of Puget Sound 
steelhead populations, the continued destruction and modification of steelhead habitat is 
the principal factor limiting the viability of the Puget Sound steelhead DPS into the 
foreseeable future. This includes agriculture, residential, commercial and industrial 
development (including impervious surface runoff), timber management activities, water 
withdrawals, and altered flows. 

● Fish passage barriers at road crossings and dams. 
● Reduced spatial structure for steelhead in the DPS. 
● Reduced habitat quality through changes in river hydrology and temperature profile, 

which are expected to increase with continuing climate change. 
● Reduced downstream gravel recruitment, and reduced movement of large woody debris. 
● In the lower reaches of many rivers and their tributaries in Puget Sound, urbanization has 

caused increased flood frequency and peak flows during storms, and reduced 
groundwater-driven summer flows. Altered stream hydrology has resulted in gravel 
scour, bank erosion, and sediment deposition. 

● Dikes, hardening of banks with riprap, and channelization, which have reduced river 
braiding and sinuosity, have increased the likelihood of gravel scour and dislocation of 
rearing juveniles. 

● Widespread declines in adult abundance (total run size), despite significant reductions in 
harvest over the last 25 years. Harvest is not considered a significant limiting factor for 
PS steelhead due to low harvest rates, 

● Threats to genetic diversity and of ecological interactions posed by use of two hatchery 
steelhead stocks (Chambers Creek and Skamania) inconsistent with wild stock recovery 
throughout the DPS. However, the risk to the species’ persistence that may be 
attributable to hatchery-related effects has declined since the last status review, based on 
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hatchery risk reduction measures that have been implemented. Improvements in 
hatchery operations associated with on-going ESA review and determination processes 
are expected to reduce hatchery-related risks. Further, hatchery releases of steelhead 
founded from non-native or out of DPS stocks have declined, and are expected to 
decrease further or cease as a term of recent 4(d) authorizations. 

● Declining diversity in the DPS, including the uncertain, but likely weak, status of summer 
run fish in the DPS. 

● High rates of juvenile mortality in estuarine and marine waters of Puget Sound, attributed 
to marine mammal predation, parasite prevalence, and contaminant loads. 

● Concerns regarding existing regulatory mechanisms, including: lack of documentation or 
analysis of the effectiveness of land-use regulatory mechanisms and land-use 
management plans, lack of reporting and enforcement for some regulatory programs, 
certain Federal, state, and local land and water use decisions continue to occur without 
the benefit of ESA review. State and local decisions have no Federal nexus to trigger the 
ESA Section 7 consultation requirement, and thus certain permitting actions allow direct 
and indirect species take and/or adverse habitat effects. 

 
2.2.1.7. Status of the Critical Habitat for Puget Sound Steelhead 

Critical habitat has been designated for Puget Sound steelhead DPS (81 FR 9252, February 24, 
2016). The designated critical habitat for the Puget Sound steelhead DPS includes specific river 
reaches associated with the following subbasins: Strait of Georgia, Nooksack, Upper Skagit, 
Sauk, Lower Skagit, Stillaguamish, Skykomish, Snoqualmie, Snohomish, Duwamish, Puyallup, 
Nisqually, Deschutes, Skokomish, Hood Canal, Kitsap, and Dungeness/Elwha. The designation 
does not include specific areas in the nearshore zone in Puget Sound, nor offshore marine areas. 
There are 18 subbasins (HUC4 basins) containing 66 occupied watersheds (HUC5 basins) within 
the range of this DPS. Nine watersheds received a low conservation value rating, 16 received a 
medium rating, and 41 received a high rating to the DPS (78 FR 2726, January 14, 2013).  . 
 
Puget Sound steelhead also occupy marine waters in Puget Sound and vast areas of the Pacific 
Ocean where they forage during their juvenile and subadult life phases before returning to spawn 
in their natal streams (NMFS 2012b). The NMFS (NMFS 2012a) could not identify “specific 
areas” within the marine and ocean range that meet the definition of critical habitat. Instead, 
NMFS considered the adjacent marine areas in Puget Sound when designating steelhead 
freshwater and estuarine critical habitat.  
 
The Puget Sound Critical Habitat Analytical Review Team found that habitat utilization by 
steelhead in a number of Puget Sound areas has been substantially affected by a variety of factors 
(this and following from NMFS 2013a) including: dams and other manmade barriers, poor 
forestry practices, urbanization, loss of wetland and riparian habitat, and reduced river braiding 
and sinuosity. These actions have led to constriction of river flows, particularly during high flow 
events, increasing the likelihood of gravel scour and the dislocation of rearing juvenile steelhead. 
The loss of side-channel habitats has also reduced important areas for spawning, juvenile rearing, 
and overwintering habitats. Estuarine areas have been dredged and filled, resulting in the loss of 
important juvenile steelhead rearing areas. 
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NMFS has completed several section 7 consultations on large scale habitat projects affecting 
listed species in Puget Sound, as discussed above in section 2.2.1.4. Among these are the 
Washington State Forest Practices Habitat Conservation Plan, and consultations on Washington 
State Water Quality Standards, the National Flood Plain Insurance Program, the Washington 
State Department of Transportation Preservation, Improvement and Maintenance Activities, and 
the Elwha River Fish Restoration Plan. In 2012, the Puget Sound Action Plan was also 
developed. These documents provide a more detailed overview of the status of critical habitat in 
Puget Sound and are incorporated by reference here. 
 
2.3. Action Area 

“Action area” means all areas to be affected directly or indirectly by the Federal action and not 
merely the immediate area involved in the action (50 CFR 402.02). The action area resulting 
from this analysis includes the places within or near the Lake Washington watershed where 
salmon and coho originating from the proposed hatchery programs would migrate and spawn 
naturally. Therefore, the action area also includes the marine waters of the Salish Sea to Cape 
Flattery off the Washington Coast in the Pacific Ocean (Figure 1). 
 
2.4. Environmental Baseline 

The “environmental baseline” refers to the condition of the listed species or its designated critical 
habitat in the action area, without the consequences to the listed species or designated critical 
habitat caused by the proposed action. The environmental baseline includes the past and present 
impacts of all Federal, State, or private actions and other human activities in the action area, the 
anticipated impacts of all proposed Federal projects in the action area that have already 
undergone formal or early section 7 consultations, and the impact of State or private actions 
which are contemporaneous with the consultation in process. The consequences to listed species 
or designated critical habitat from ongoing agency activities or existing agency facilities that are 
not within the agency’s discretion to modify are part of the environmental baseline (50 CFR 
402.02). 
 
2.4.1. Habitat 

As described in sections 2.2.1.4 and 2.2.1.7, over the last several years, NMFS has completed 
several section 7 consultations on large-scale habitat projects affecting listed species in the action 
area. Among these are the Washington State Forest Practices Habitat Conservation Plan (NMFS 
2006a), and consultations on Washington State Water Quality Standards (NMFS 2008a), the 
National Flood Insurance Program (NMFS 2008b), and the Washington State Department of 
Transportation Preservation, Improvement and Maintenance Activities (NMFS 2013b). These 
documents provide a more detailed overview of the status of critical habitat in Puget Sound and are 
incorporated by reference here. These documents considered the effects of the proposed actions 
that would occur up to the next 50 years on the ESA-listed salmon and steelhead species in the 
action area and, more comprehensively, in the Puget Sound basin. The portions of those 
documents that deal with effects in the action area (described in Section 2.4) are hereby 
incorporated by reference. 
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Lakes and Major Rivers 

Lake Washington watershed contains two river systems: Sammamish to the north and Cedar 
River at the southern end.  There are also three large lakes: Lake Union, Lake Washington, and 
Sammamish Lake, which drain directly to Puget Sound through the Lake Washington Ship Canal 
and Hiram M. Chittenden Locks (Kerwin, 2001),  Historically, Lake Washington connected to 
Puget Sound via the Black River, which joined with the White River (now Green River) to form 
the Duwamish River before reaching Elliott Bay (Council 2017).  At that time, Cedar River was 
not a tributary to Lake Washington and flowed into the Black River.  During Cedar River flood 
events, the upper Black River reversed its flow, and Cedar River would discharge into Lake 
Washington (Chrzastowski 1983). 
 
The first major alteration of the Cedar River and Lake Washington watershed was the 
construction of a permanent barrier (Landsburg Dam), which prohibited access to the upper 
Cedar River by anadromous species in 1900 (Seattle Public Utilities 2005).  The diversion of the 
lower Cedar River in 1912 redirected the river from the Black River and connected to Lake 
Washington. In 1911, construction began on a dam and locks system at Ballard, creating a ship 
canal from Lake Washington to Puget Sound.  As a result, lake surface dropped a total of 8.8 feet 
in elevation and permanently disconnected the Black River outlet to the Duwamish (Larson 
1975; Chrzastowski 1983; Council 2017). 
 
The Puget Sound region (especially King, Pierce, and Snohomish Counties) experienced a 
dramatic increase in human population in the early twentieth century (Kerwin 2001).  In 
subsequent decades, increased urbanization transitioned the surrounding farmland into 
residential, commercial, and industrial uses (Kerwin, 2001), which affected habitat diversity, 
quantity, and quality within the watershed. 
 
The Lake Washington watershed drains a catchment of 1,572 km2. The eastern portion of the 
watershed includes part of the Cascade Range.  Cedar River originates high in the Cascade 
range, and receives runoff in spring or summer from winter snowpack. In the lower Cedar River 
reaches, a combination of industrial, commercial, and residential use, transitioning into 
agricultural and forestry as one moves upstream outside of urban growth boundaries. In the 
upper Cedar River, the predominant land use is transitioning from commercial forestry to 
preservation of forests inside the City of Seattle municipal watershed. 
 
Issaquah River flows into Sammamish Lake before entering Sammamish River and connecting 
with Lake Washington.  Issaquah River lies at the base of Cascade Range and summer baseflow 
is sustained by groundwater (Kerwin 2001). The tributary is occupied by primarily residential, 
commercial and industrial and generally have high levels of impervious surfaces, altered 
hydrologic regimes, loss of floodplain connectivity, poor riparian conditions, and water quality 
problems. The eastern region of the watershed experiences relatively greater annual precipitation 
than the western portion of the watershed (e.g., Puget Sound Lowland), although precipitation 
varies widely across the region (Kerwin 2001).  
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Nearshore  

The majority of the mainland nearshore is incorporated into the cities of Seattle, Burien, SeaTac, 
Normandy Park, Des Moines, and Federal Way. Extensive development and shoreline 
modification (e.g., shoreline armoring) have resulted in the loss and degradation of nearshore 
habitats (Kerwin 2001). This loss is mainly caused by disconnection of nearshore habitat forming 
processes (e.g., loss of sediment sources, marine riparian vegetation). The small streams entering 
the nearshore area have been adversely affected by urbanization. These streams suffer from a 
lack of riparian forest, extensive infestation of non-native vegetation, excessive sedimentation, 
high storm flows, and serious water quality problems. Shoreline armoring has resulted in filled in 
shallow water habitats, loss of riparian vegetation, and isolation of nearshore habitat from 
sediment sources. Collectively, the effects of shoreline armoring have reduced the quantity and 
quality of juvenile rearing habitat and reduced important prey items for anadromous salmonids 
including vertebrate and invertebrate species utilized by juveniles and forage fish (e.g., herring, 
sandlance, and surf smelt) utilized by subadult and adult salmonids (Kerwin 2001). Piers and 
other man-made structures within Elliott Bay have reduced the productivity of nearshore habitat 
and may also affect salmonid migration patterns. 
 
Marine  

Puget Sound, a fjord system of submerged glacier valleys formed during a previous ice age, is an 
estuary located in northwest Washington State and covers an area of about 900 square miles, 
including 2,500 miles) of shoreline. Puget Sound can be subdivided into five interconnected 
basins separated by shallow sills: (1) the San Juan/Strait of Juan de Fuca Basin (also referred to 
as “North Puget Sound”), (2) Main Basin, (3) Whidbey Basin, (4) South Puget Sound, and (5) 
Hood Canal. Each basin differs in features such as temperature regimes, water residence and 
circulation, biological conditions, depth profiles and contours, species, and habitats (Drake et al. 
2010). 
 
The discussion of marine habitat in Puget Sound that follows is summarized from information 
contained in the Shared Strategy for Puget Sound Chinook Salmon Recovery Plan (SSPS 2007) 
unless otherwise noted. This snapshot of habitat issues in Puget Sound highlights some of the 
challenges for ESA-listed species: 
 

• 33% of Puget Sound Shorelines have been modified with bulkheads or other armoring 
• 73% of the wetlands in major deltas of Puget Sound rivers have been lost in the last 100 

years  
• In 1854, prior to European settlement, the area downstream of what is now RM  5.5 on 

the Duwamish River was the Duwamish estuary: 1,450 acres of shallows and flats, 1,170 
acres of tidal marshes and 1,230 acres of tidal swamps 

• 290 “pocket estuaries” formed by small independent streams and drainages have been 
identified throughout Puget Sound; 75 are stressed by urbanization 

• 40+ aquatic nuisance species currently infest Puget Sound  
• 972 municipal and industrial wastewater discharges into the Puget Sound Basin are 

permitted by the Washington Department of Ecology 
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• 180 permit holders had specific permission to discharge metals, including mercury and 
copper  

• Over 1 million pounds of chemicals were discharged into Puget Sound in 2000 by the 20 
industrial facilities that reported their releases to the Environmental Protection Agency 

• An estimated 500,000 on-site sewage systems are estimated to occur in the Puget Sound 
basin 

• 16 major (> 10,000 gallons) spills of oil and hazardous materials occurred in Puget Sound 
between 1985 and 2001 

• 191 smaller spills occurred from 1993 to 2001, releasing a total of more than 70,000 
gallons 

• More than 2,800 acres of Puget Sound’s bottom sediments are contaminated to the extent 
that cleanup is warranted 
 

These specific examples can be summarized by seven major stressors in the marine environment 
of Puget Sound: (1) Loss and/or simplification of deltas and delta wetlands; (2) Alteration of 
flows through major rivers; (3) Modification of shorelines by armoring, overwater structures and 
loss of riparian vegetation; (4) Contamination of nearshore and marine resources; (5) Alteration 
of biological populations and communities; (6) Transformation of land cover and hydrologic 
function of small marine discharges via urbanization; and (7) Transformation of habitat types 
and features via colonization by invasive plants. 
 
Restoration/Mitigation 

The Pacific Coastal Salmon Recovery Fund (PCSRF) was established by Congress to help 
protect and recover salmon and steelhead populations and their habitats (NMFS 2007). The states 
of Washington, Oregon, California, Idaho, and Alaska, and the Puget Sound, Pacific Coastal, and 
Columbia River Basin tribes, receive PCSRF appropriations from NMFS each year. The fund 
supplements existing state, tribal, and local programs to foster development of Federal-state-
tribal-local partnerships in salmon and steelhead recovery. In addition, other federal, state, tribal, 
local, and private funding sources support recovery planning and on-the-ground restoration 
activities throughout the regions. 
 
The federally approved Shared Strategy for Puget Sound Recovery Plan for Puget Sound 
Chinook Salmon, Volume II of the plan (SSPS 2007), Cedar River Habitat Conservation Plan 
(HCP), and Landsburg Mitigation Agreement (LMA) describe, in detail, on-going and proposed 
state, tribal, and local government restoration and recovery activities for listed Chinook salmon 
in the Lake Washington watershed. The WRIA 8 Salmon Habitat Plan was prepared by the 
WRIA 8 Steering Committee, which updates the recovery work plan annually through 3-year 
work plan updates. While the WRIA 8 Plan is based on three Chinook populations, the NOAA 
Fisheries Puget Sound Technical Recovery Team (PSTRT) identifies two: the Cedar River 
Chinook and Sammamish River Chinook (which includes North Lake Washington and 
Issaquah sub-populations). Lake Washington habitat restoration activities are also guided by the 
(NWIFC 2020) report, which examines key indicators of habitat quality and quantity within the 
Muckleshoot Tribes’ usual and accustomed fishing area. 
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Specific actions to recover listed salmon and steelhead have included: implementation of land 
use regulations to protect existing habitat and habitat-forming processes through updating and 
adopting Federal, state, and local land use protection programs, as well as more effectively 
combining regulatory, voluntary, and incentive-based protection programs; implementation of 
nearshore and shoreline habitat protection measures such as purchase and protection of estuary 
areas important for salmon productivity; protection and restoration of habitat functions in lower 
river areas, including deltas, side-channels, and floodplains important as rearing and migratory 
habitat; implementation of protective instream flow programs to reserve sufficient water for 
salmon production; and implementation of protective actions on agricultural lands. 
 
Recent examples of habitat restoration and salmon recovery projects funded through the PCSRF 
in the action area are accessible online at1: 
https://secure.rco.wa.gov/PRISM/search/ProjectSearch.aspx). 

 
• Removal of ~3000 feet of levee/revetment and approximately 180,000 cubic yards of fill 

in the floodplain, planting 28 acres, and constructing ~ 4875 feet of pilot channel.  
• Reduction of confinement and connecting the Cavanaugh Pond and Ricardi Natural 

Areas and supporting 52 acres of floodplain restoration on the left bank of the Cedar 
River between River Mile 6.5 and 7.5.  

• Reconnect a 1,080 foot relic side channel and floodplain to the Sammamish River 
providing accessible off-channel rearing habitat for Chinook and Coho salmon.   

• Six acres of riparian and wetland floodplain would be enhanced through control of reed 
canary grass and blackberry and 2.6 acres of riparian and wetland planting to enhance 
native habitat. 

• Installing thirty five log structures, five pools, and two box culverts to facilitate flows 
into and out of the side channel. 

• Enhancing six acres of riparian and wetland floodplain through control of reed canary 
grass and blackberry and 2.6 acres of riparian and wetland planting to enhance native 
habitat. 

• Adding large wood to 800 feet of channel in the headwaters of Willow Creek,   
• continued monitoring and removal of knotweed infestations to 20% of the original area of 

infestation in Cedar River. 
• Conversion of 0.3 acres of lawn to riparian habitat with 100 new native trees and 500 

native shrubs, widening of the existing channel cross-section to reduce bank erosion, 
improve flood capacity, and create space for a seasonal inundated plant community, and 
installation of large wood to create fish habitat, reduce erosion, and protect existing 
infrastructure in Bear Creek, Redmond. 

• Bed-control structures that were composed of large woody debris (LWD) and boulders 
were placed within Maplewood Creek to improve fish passage. 
 

                                                 
1 Search terms for PRISM search were: Selection Criteria: Project Type: Enhancement, Monitoring, Research, 
Restoration; Geographic Area: WRIA: Cedar-Sammamish; Theme: Salmon Projects - Monitoring and Research 
Projects, Salmon Projects - Salmon Capacity Projects, Salmon Projects - Salmon Protection Projects, Salmon 
Projects - Salmon Restoration Projects, Wildlife/Habitat Projects - Wildlife/Habitat Projects; 

https://secure.rco.wa.gov/PRISM/search/ProjectSearch.aspx
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2.4.2. Dams 

The Landsburg Diversion Dam is a run-of-the-river dam that was built in early 1900, to serve as 
the intake point for the City of Seattle’s municipal water supply system. The dam is located on 
the Cedar River at river mile 21.8, and has excluded anadromous fish from exploiting 17 stream 
miles of habitat between Landsburg and the natural migration barrier formed by Lower Cedar 
Falls. In 2000, the city of Seattle formed a 50-year Habitat Conservation Plan (HCP) for the 
Cedar River.  The HCP describes habitat protection and restoration measures for Cedar River, 
and include descriptions of protective land management practices, instream flow management, 
and mitigation measures for barriers to fish migration (City of Seattle 2000).  As part of the 
HCP, Seattle Public Utility (SPU) constructed a fish ladder and sorting facility that provided 
access for native fishes to upstream habitat. This reopened access to spawning and rearing 
habitat. 
 
SPU typically operates the ladder and sorting facility in sorting mode from September through 
December to prevent sockeye from passing above Landsburg Dam and operates in a passive 
mode throughout the remainder of the year ( ESA section 10(a)(1)(B) number1235).  While in 
sorting mode, the sockeye salmon are separated from Chinook or coho. The Chinook and coho 
are crowded into the bypass channel and returned to the Cedar River above the dam.  The 
sockeye are moved to a fish truck and either returned to the Cedar River downstream or moved 
to the Cedar River Hatchery for use as broodstock (Table 12).When the fish ladder is operated in 
passive mode, all fish are allowed to bypass the sorting facility and move unhindered into the 
river above the dam. 
 

Table 12. Counts of Sockeye, Chinook, and Coho at Landsburg Dam. Source: MIT. 
personal communication. 

Year Fish passed 
above Landsburg 

Fish released downstream or 
taken to Cedar River Hatchery 

(only Sockeye) Chinook Coho 
2003 79 47 1001 
2004 51 99 876 
2005 69 170 1238 
2006 182 190 2414 
2007 397 142 831 
2008 146 366 59 
2009 138 679 236 
2010 169 * 3706 
2011 211 * 915 
2012 278 1085 1359 
2013 262 * 1327 
2014 199 * 634 
Totals 2181 2778 14596 
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2.4.3. Climate Change 

Climate change has negative implications for designated critical habitats in the Pacific Northwest 
(Climate Impacts Group 2004; Scheuerell and Williams 2005; Zabel et al. 2006; ISAB 2007). 
The distribution and productivity of salmonid populations in the region are likely to be affected 
(Beechie et al. 2006). Average annual Northwest air temperatures have increased by 
approximately 1ºC since 1900, or about 50% more than the global average over the same period 
(ISAB 2007). The latest climate models project a warming of 0.1 ºC to 0.6 ºC per decade over 
the next century. According to the Independent Scientific Advisory Board (ISAB), these effects 
pose the following impacts over the next 40 years: 
 

• Warmer air temperatures will result in diminished snowpacks and a shift to more 
winter/spring rain and runoff, rather than snow that is stored until the spring/summer melt 
season. 
 

• With a smaller snowpack, these watersheds will see their runoff diminished earlier in the 
season, resulting in lower stream-flows in the June through September period. 
 

• River flows in general and peak river flows are likely to increase during the winter due to 
more precipitation falling as rain rather than snow. 
 

• Water temperatures are expected to rise, especially during the summer months when 
lower stream-flows co-occur with warmer air temperatures. 

 
Climate change is also predicted to cause a variety of impacts on Pacific salmon as well as their 
ecosystems (Mote et al. 2003; Crozier et al. 2008a; Martins et al. 2012; Wainwright and 
Weitkamp 2013). While all habitats used by Pacific salmon will be affected, the impacts and 
certainty of the change vary by habitat type. Some impacts (e.g., increasing temperature) affect 
salmon at all life stages in all habitats, while others are habitat-specific (e.g., stream flow 
variation in freshwater). The complex life cycles of anadromous fishes including salmon rely on 
productive freshwater, estuarine, and marine habitats for growth and survival, making them 
particularly vulnerable to environmental variation (Morrison et al. 2016). Ultimately, the specific 
nature, level, and rate of change and the synergy between interconnected terrestrial/freshwater, 
estuarine, nearshore, and ocean environments will determine the effect of climate change on 
salmon and steelhead across the Pacific Northwest. The primary effects of climate change on 
Pacific Northwest salmon and steelhead are: 

• Direct effects of increased water temperatures on fish physiology 
• Temperature-induced changes to stream flow patterns 
• Alterations to freshwater, estuarine, and marine food webs 

 
How climate change will affect each stock or population of salmon also varies widely depending 
on the level or extent of change and the rate of change and the unique life history characteristics 
of different natural populations (Crozier et al. 2008b). Juveniles may out-migrate earlier if they 
are faced with less tributary water and lower and warmer summer flows may be challenging for 
returning adults (Dittmer 2013). In addition, the warmer water temperatures in the summer 
months may persist for longer periods and more frequently reach and exceed thermal tolerance 
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thresholds for salmon and steelhead (Mantua et al. 2009). Larger winter stream flows may 
increase redd scouring for those adults that do reach spawning areas and successfully spawn. 
 
These changes will not be spatially homogeneous across the entire Pacific Northwest. Low-lying 
areas are likely to be more affected. Climate change may have long-term effects that include, but are 
not limited to, depletion of cold water habitat, variation in quality and quantity of tributary rearing 
habitat, alterations to migration patterns, accelerated embryo development, premature. However, 
Habitat preservation and restoration actions can help mitigate the adverse impacts of climate change 
on salmonids. For example, restoring connections to historical floodplains and freshwater and 
estuarine habitats would provide fish refugia and areas to store excess floodwaters (Battin et al. 2007; 
ISAB 2007).  Harvest and hatchery actions can respond to changing conditions associated with 
climate change by incorporating greater uncertainty in assumptions about environmental conditions, 
and conservative assumptions about salmon survival, in setting management and program objectives 
and in determining rearing and release strategies (Beer and Anderson 2013). 
 
2.4.4. Fisheries 
 
2.4.4. Fisheries 

2.4.4.1. Impacts on Chinook Salmon 

In the past, fisheries in Puget Sound were generally not managed in a manner appropriate for the 
conservation of naturally spawning Chinook salmon populations. Fisheries exploitation rates 
were in most cases too high—especially in light of the declining pre-harvest productivity of 
natural Chinook salmon stocks. Over the past several decades, the co-managers implemented 
strategies to manage fisheries to reduce harvest impacts and to implement harvest objectives that 
are more consistent with the underlying productivity of the natural populations. 
 
Forty-eight percent of the harvest of Lake Washington Chinook salmon management units 
occurs in salmon fisheries outside the Action Area, primarily in Canadian waters. The effects of 
these Northern fisheries on Puget Sound Chinook were assessed in previous biological opinions. 
Chinook salmon stocks are artificially propagated through 41 programs in Puget Sound 
(completed section 7 consultations are summarized in Table 16).  Currently, the majority of 
Chinook salmon hatchery programs produced fall-run (also called summer/fall) stocks for 
fisheries harvest augmentation purposes. Supplementation programs implemented as 
conservation measures to recover early returning Chinook salmon operate in the White, 
Dungeness NMFS (no date), and North Fork Nooksack Rivers, and for summer Chinook salmon 
on the North Fork Stillaguamish (NMFS 2019a) and Elwha Rivers. Supplementation or re-
introduction programs are in operation for early Chinook in the South Fork Nooksack River, fall 
Chinook in the South Fork Stillaguamish River (NMFS 2019a), and spring and late-fall Chinook 
in the Skokomish River Table 15. 
 
In Central/South Sound, except for the Sammamish population, average natural-origin 
escapements since 1999 are well above their critical thresholds. Growth rates for recruits and 
escapement are positive for the Cedar and Sammamish Rivers (Table 13). As with most 
populations in other Puget Sound regions, the growth rates for escapement are higher than 
growth rates for recruitment. The fact that growth rates for escapement (i.e., fish through the 
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fishery) are greater than growth rates for return (i.e., abundance before fishing) indicates some 
stabilizing influence on escapement from past reductions in fishing-related mortality. However, 
the Sammamish fall Chinook population is classified as Tier 3 in terms of its role of recovery for 
the ESU. 
 
Natural-origin spawning escapements in 2019 are not expected to be above the critical threshold 
for the Sammamish River but are expected to be above the rebuilding threshold for Cedar River 
(Table 13). The additional contribution of hatchery spawners to natural escapement for most of 
these populations should mitigate demographic risk. 
 
Exploitation rates for most of the Puget Sound Chinook management units have been reduced 
substantially since the late 1990s compared to years prior to listing (average reduction = -33%, 
range = -67 to +30%)(NMFS 2020a). 
 

Table 13. Long-term trends in abundance and productivity for Puget Sound Chinook 
populations. FRAM adult equivalent exploitation rates in 2019 ocean and Puget 
Sound Fisheries and escapements expected after these fisheries occur for Puget 
Sound management units. Source Harvest management plan and the other sources 
embedded within that document  
Population Natural Escapement 

Trend (1990 – 2017)1 
Natural Origin Growth Rate 

(1990-2015)2 
2019 

NMFS Recruitmen
t (Recruits) 

Escapement 
(Spawners) 

NOR Critical Rebuilding 

Cedar River 1.05 Increasing 1.01 1.04 844 200 282 
Sammamish River3 (late) 1.01 Stable 1.02 1.04 95 200 1,250 
Duwamish-Green R. (late) 0.97 Stable 0.94 0.97 2,161 400 1,700 
White River4 (early) 1.10 Increasing 1.02 1.05 434 200 488 
Puyallup River (late) 0.98 Declining 0.92 0.94 1,115 200 797 
Nisqually River (late) 1.05 Increasing 0.93 1.00 550 200 1,200 

1 Escapement Trend is calculated based on all spawners (i.e., including both natural origin spawners and hatchery-origin fish 
spawning naturally) to assess the total number of spawners passed through the fishery to the spawning ground. Directions of 
trends defined by statistical tests.  
2 Median growth rate (λ) is calculated based on natural-origin production. It is calculated assuming the reproductive success of 
naturally spawning hatchery fish is equivalent to that of natural-origin fish (for those populations where information on the 
fraction of hatchery fish in natural spawning abundance is available). Source: Abundance and Productivity Tables from NWFSC 
database. 
3 Median growth rate estimates for Sammamish has not been revised to include escapement in Issaquah Creek. 
4 Natural spawning escapement includes an unknown % of naturally spawning hatchery-origin fish from late- and early run 
hatchery programs in the White/Puyallup River basin. 

                                                 

 
2.4.4.2. Impacts on Steelhead 

Harvest rates on natural-origin steelhead vary widely among watersheds, but have declined since 
the 1970s and 1980s and are now stable and generally less than 5% (NMFS 2020a) discussed 
further in Environmental Baseline section 2.4.1). The 2015 NWFSC status review update 
concluded that current harvest rates on natural origin steelhead are unlikely to substantially 
reduce spawner abundance for most steelhead populations in Puget Sound (NWFSC 2015). 
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Available data on escapement of summer, winter, and summer/winter steelhead populations in 
Puget Sound are limited.  NMFS used the available data for eight Puget Sound winter and 
summer/winter steelhead populations (Skagit, Snohomish, Green, Puyallup, and Nisqually) to 
calculate terminal harvest rates on natural-origin steelhead (NMFS 2020a). From the late 1970s 
to early 1990s, harvest rates on natural-origin steelhead averaged between 10% and 40%, with 
some populations in central and south Puget Sound (NWFSC 2015; WDFW and PSTIT 2016; 
2017; 2018; 2019; 2020; 2021). Harvest rates on natural-origin steelhead vary widely among 
watersheds, but have declined since the 1970s and 1980s, and are now stable at generally less 
than 5% (Figure 5).  North Lake Washington and Sammamish tributaries have not been 
monitored since 2000, and, due to small numbers of steelhead seen at the Chittenden Locks and 
estimated in the Cedar River, it is unlikely that there are currently many steelhead in these 
tributaries (SCORE database). 
 

 
 

Figure 5:  Total Steelhead terminal harvest rate percentage for five natural-origin index 
populations in Puget Sound 

 
In the 5-year status review update for Pacific Northwest Salmon and Steelhead listed under the 
ESA (NWFSC 2015).  Since 2015, fifteen of the 21 populations indicate small to substantive 
increases in abundance.  However, most steelhead populations remain small. From 2014 to 2019, 
nine of the 21 steelhead populations had fewer than 250 natural spawners annually, and 12 of the 
21 steelhead populations had 500 or fewer natural spawners ((NMFS 2020b)(NMFS 
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2020b)(NMFS 2020b)(NMFS 2020b)(NMFS 2020a)(NMFS 2020b)(NMFS 2020b)(NMFS 
2020a)(NMFS 2020a)(NMFS 2020a)(NMFS 2020a)(NMFS 2020b)(NMFS 2020a)(NMFS 
2020b)(NMFS 2020a)(NMFS 2020a)(NMFS 2020a)(NMFS 2020a)(NMFS 2020a)(NMFS 
2020a)(NMFS 2020a)(NMFS 2020a)(NMFS 2020a)(NMFS 2020a)(NMFS 2020a)(NMFS 
2020a)(NMFS 2020a)(NMFS 2020a)(NMFS 2020a)(NMFS 2020a)(NMFS 2020a)(NMFS 
2020a)(NMFS 2020a)(NMFS 2020a)(NMFS 2020a)(NMFS 2020a)(NMFS 2020b)(NMFS 
2020b)(NMFS 2020b)(NMFS 2020b)(NMFS 2020b)(NMFS 2020b)(NMFS 2020b)(NMFS 
2020b)(NMFS 2020b)(NMFS 2020a)(NMFS 2020b)(NMFS 2020a)(NMFS 2020a)(NMFS 
2020b)(NMFS 2020b)(NMFS 2020a)(NMFS 2020a)(NMFS 2020a)(NMFS 2020a)(NMFS 
2020a)(NMFS 2020a)(NMFS 2020a)(NMFS 2020a)(NMFS 2020a)(NMFS 2020a)(NMFS 
2020a)NMFS 2021).  The steelhead population in Lake Washington basin has been decreasing 
over the past decade and the 5-year geometric mean is <10 (Table 14). 
 

Table 14: Recent (2015-2019) 5-year geometric mean of raw wild spawner counts for Puget 
Sound steelhead populations and population groups compared with Puget Sound 
Steelhead Recovery Plan high and low productivity recovery targets (NMFS 2015).  

Major population 
group 

Demographically 
Independent 
Population 

Recent Abundance  Recovery Target 

  (2015 – 2019) High Productivity Low 
Productivity 

Central and South 
Sound 

Cedar River <101 1,200 4,000 

 North Lake Washington 
Tributaries 

NA 4,800 16,000 

Data Source: Table recreated from (NMFS 2020a)Table 8, which used data from NWFSC 2015.

1 Abundance is only a partial population estimate 
                                                 

 

Table 15: Total escapement of Lake Washington winter steelhead natural spawners, 2010 – 
2019 co-manager data (WDFW and Muckleshoot Indian Tribe 2020a).  

Year Escapement1  
2010 2 
2011 4 
2012 0 
2013 8 
2014 0 
2015 6 
2016 10 
2017 0 
2018 4 
2019 0 
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1 Data are escapement estimates based on redd surveys conducted in the Cedar River mainstem index area, located 
between RM 0.0 and the Landsburg Road SE crossing at RM 21. These estimates do not include fish that migrate 
above Landsburg Dam to spawn. Steelhead have had access to spawning areas upstream from Landsburg since 
1993. 

                                                 

 
2.4.5. Hatcheries 

Hatcheries can provide benefits to the status of Puget Sound Chinook and steelhead by reducing 
demographic risks and preserving genetic traits for populations at low abundance in degraded 
habitats. In addition, hatcheries help to provide harvest opportunity, which is an important 
contributor to the meaningful exercise of treaty rights for the Northwest tribes.  In the past, 
hatcheries have been used to compensate for factors that limit anadromous salmonid viability 
(e.g., harvest, human development) by maintaining fishable returns of adult salmon and 
steelhead. A new role for hatcheries emerged during the 1980s and 1990s as a tool to conserve 
the genetic resources of depressed natural populations and to reduce short-term extinction risk 
(e.g., Snake River sockeye salmon). Hatchery programs also can be used to help improve 
viability by supplementing natural population abundance and expanding spatial distribution. 
However, the long-term benefits and risks of hatchery supplementation remain untested (Christie 
et al. 2014). Therefore, fixing the factors limiting viability is essential for long-term viability. 
 
Hatchery production has declined in recent years across the DPS, especially for non-listed 
stocks, and the fraction of hatchery spawners on spawning grounds are low for many rivers. 
Increasing estimates of productivity for a few steelhead populations from the 2011-2015 time 
frame are encouraging but included only one to a few years, thus, the patterns of improvement in 
productivity were not widespread, or considered certain to continue into the 2015-2019 time 
frame (Hard et al. 2015). Total harvest rates continue to be at the low levels considered in the last 
two status updates (NMFS 2015). These rates are unlikely to increase substantially in the 
foreseeable future. Recovery efforts in conjunction with improved ocean and climatic conditions 
have resulted in improved status for the majority of populations in this DPS; however, absolute 
abundances are still low, especially summer-run populations, and the DPS remains at high to 
moderate risk (NWFSC 2015). 
 
The current abundance of Lake Washington natural-origin Chinook salmon is substantially 
reduced from historical levels—escapements from 1999 through 2019 are depicted below in 
Figure 6 and the number of adult Chinook salmon passed upstream of the Issaquah Creek 
Hatchery weir are depicted in Figure 7.  Prior to 2007, the number of Chinook salmon passed 
upstream of the weir averaged 3,220 (RY 1996-2006), whereas from 2007 through 2018 the 
number of Chinook salmon passed upstream averaged 781.  Natural-origin Chinook return to 
three discrete areas: Bear Creek and tributaries, Issaquah Creek and East Fork Issaquah Creek, 
and Issaquah Creek Hatchery. Based on 5 years of data (RY 2014-2018), the total number of 
natural-origin Chinook averaged 130 adults with the fish being distributed as follows: Bear 
Creek (36.9%), Issaquah Creek below Hatchery with (26.2%), and Issaquah Creek Hatchery 
Trap (36.9%).  These averages and distributions are used in section 2.5.2.2.1 to develop future 
projections of pHOS and PNI for the Sammamish Basin Chinook salmon population. 
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.  

Figure 6: Estimated annual natural Chinook salmon escapement abundances in the 
Sammamish Basin for 1999 through 2019.  Natural- and hatchery-origin breakouts 
are included for years where data are available.  Escapement estimates do not 
include escapement of hatchery- or natural-origin Chinook salmon to the Issaquah 
Creek Hatchery or Chinook salmon passed upstream of the Issaquah Creek 
Hatchery weir.  Source: WDFW Score database; WDFW and Muckleshoot Indian 
Tribe, unpublished escapement data 2020. 

 

 
Figure 7: Number of adult Chinook salmon passed/escaped upstream of the Issaquah 

Creek Hatchery weir.  Source: WDFW and Muckleshoot Indian Tribe unpublished 
data 2020. 
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Chinook salmon stocks are artificially propagated through 41 programs in Puget Sound 
(completed section 7 consultations are summarized in (Table 16). Currently, the majority of 
Chinook salmon hatchery programs produce fall-run (also called summer/fall) stocks for 
fisheries harvest augmentation purposes. Supplementation programs implemented as 
conservation measures to recover early returning Chinook salmon operate in the White, 
Dungeness (NMFS 2016e), and North Fork Nooksack Rivers, and for summer Chinook salmon 
on the North Fork Stillaguamish (NMFS 2019b) and Elwha Rivers. Supplementation or re-
introduction programs are in operation for early Chinook in the South Fork Nooksack River, fall 
Chinook in the South Fork Stillaguamish River (NMFS 2019b), and spring and late-fall Chinook 
in the Skokomish River. 
 

Table 16. Summary of completed Section 7 consultations for hatchery programs in Puget 
Sound. 

Biological 
Opinion 

Programs Authorized in Opinion Signature 
Date 

Citation 

Lake Ozette 
Sockeye Salmon 

Umbrella Ck 
Supplementation/Reintroduction 

June 9, 2015 (NMFS 2015b; 
2015a) 

Elwha   Lower Elwha Hatchery Native Steelhead December 15, 
2014 

(NMFS 2014) 
  Lower Elwha Hatchery Elwha Coho 
  Elwha Channel Hatchery Chinook 
  Lower Elwha Hatchery Elwha Chum 
  Lower Elwha Hatchery Pink 

Dungeness   Dungeness River Hatchery Spring 
Chinook 

May 31, 2016  (NMFS 2016e) 

  Dungeness River Hatchery Coho 
  Dungeness River Hatchery Fall Pink 

Early Winter 
steelhead #1 

 Kendall Creek Winter Steelhead April 15, 2016 (NMFS 2016b) 
 Dungeness River Early Winter Steelhead 
 Whitehorse Ponds Winter Steelhead 

Early Winter 
Steelhead #2 

 Snohomish/Skykomish Winter Steelhead April 15, 2016 (NMFS 2016c)  
 Snohomish/Tokul Creek Winter Steelhead 

Stillaguamish  Stillaguamish Fall Chinook Natural Stock 
Restoration 

June 20, 2019 (NMFS 2019b) 

 Stillaguamish Summer Chinook Natural 
Stock Restoration  
 Stillaguamish Late Coho  
 Stillaguamish Fall Chum 

Snohomish Tulalip Hatchery Chinook Sub-yearling September 27, 
2017 

(NMFS 2017b) 
 Wallace River Hatchery Summer Chinook 

Wallace River Hatchery Coho 
Tulalip Hatchery Coho 
Tulalip Hatchery Fall Chum 
Everett Bay Net-Pen Coho 

Hood Canal Hoodsport Fall Chinook September 30, 
2016 

(NMFS 2016a) 
Hoodsport Fall Chum 
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Hoodsport Pink 
Enetai Hatchery Fall Chum 
Quilcene NF Hatchery Coho 
Quilcene Bay Net-Pens Coho 
Port Gamble Bay Net-Pens Coho 
Port Gamble Hatchery Fall Chum 
Hamma Hamma Chinook Salmon 
Hood Canal Steelhead Supplementation 

Duwamish/Green Soos Creek Hatchery Fall Chinook  April 15, 2019  (NMFS 2019c) 
Keta Creek Coho (w/ Elliott Bay Net-pens) 
Soos Creek Hatchery Coho 
Keta Creek Hatchery Chum 
Marine Technology Center Coho 
Fish Restoration Facility (FRF) Coho   

 FRF Fall Chinook   
FRF Steelhead  
Green River Native Late Winter Steelhead 
Soos Creek Hatchery Summer Steelhead 

 
 
There are currently 13 hatchery programs in Puget Sound that propagate steelhead (completed 
section 7 consultations are summarized in Table 16). Currently, there are five steelhead 
supplementation programs operating for natural-origin winter run steelhead conservation purposes in 
Nookscak (NMFS 2016b), Dungeness (NMFS 2016b), Stilaguamish (NMFS 2016b), and two 
populations in the Snohomish (NMFS 2016c). Fish produced through the five conservation programs 
are designated as part of the listed Puget Sound Steelhead DPS, and are protected with their 
associated natural-origin counterparts from take (79 FR 20802, April 14, 2014). Three other harvest 
augmentation programs propagate non-listed early summer-run steelhead (ESS) derived from 
Columbia River, Skamania stock, Hood Canal. The EWS and ESS stocks reared and released as 
smolts through the eight programs are considered more than moderately diverged from any natural-
origin steelhead stocks in the region and were therefore excluded from the Puget Sound Steelhead 
DPS. 
 
Currently, hatcheries in the Lake Washington watershed are operated mainly to produce fish for 
harvest, as mitigation for reductions in natural salmon production and productivity resulting from 
degradation and loss of natural salmon habitat. Effects of the on-going operation for the hatchery 
programs are discussed in detail in Section 2.5.2. 
 
Issaquah Fall Chinook Program 

The first recorded plants of juvenile Chinook into the Lake Washington basin occurred in 1901, 
and intermittent plants continued for decades. The donor stock originated from native Green 
River fall Chinook salmon adults trapped in the mainstem river at the outlet of Soos Creek 
beginning in 1902 (Becker, 1967). Although some additional stocks (e.g., Columbia river-origin 
Chinook in the 1920s) were occasionally imported in the early days of the hatchery operation, 
contribution of these out-of-basin stocks was not significant (Marshall et al. 1995). In 1937 
Green River Chinook transfers were used to found production at the Issaquah Hatchery (WDF 
1939). The program has been self-sustaining since 1992, when transfers of Green River hatchery 
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lineage fall Chinook from other regional hatcheries were prohibited under WDFW’s Fish 
Transfer Policy (WDFW 2003l; WDFW 1992, NMFS/SHIEER 2004). Chinook were not 
consistently mass-marked at the facility until 2000. Prior to consistent mass-marking the level of 
natural-origin fish incorporated into the hatchery brood stock was unknown. The Chinook 
production at Issaquah Hatchery is currently managed as an integrated program, which requires 
annual inclusion of natural-origin fish into hatchery broodstock at a level of 10-20 % of program 
goals following recommendations of the Hatchery Scientific Review Group (HSRG). 
 
The Willow Creek Hatchery was built in early 1985. The hatchery originally propagated 
Chinook, using fish from Soos Creek Hatchery on the Duwamish-Green River (WDF 1939), and 
was discontinued in 1992. 
 
Issaquah Coho Hatchery Program 

Since its inception in 1936, the Issaquah Hatchery coho program has relied on two sources: 
locally-collected adults, and fish transplants from Soos Creek Hatchery (Green River). The 
program has been self-sustaining since 1992 (with the exception of 2010, when 540,020 were 
transferred from the Wallace River Hatchery integrated coho program to make up for a shortfall) 
(See section 9.1.1). The coho net pen project was initiated in 1978. Coho were originally 
supplied from Marblemount Hatchery (Skagit River stock); as of 2003, coho releases are from 
Issaquah Hatchery. Issaquah Creek coho stock was selected to reduce the potential impacts of 
adult strays into local watersheds. Production of coho at the Willow Creek Hatchery facility was 
initiated in 1992 using fish from Issaquah Hatchery. 
 
UW Chinook Hatchery 

Historically, broodstock were derived from fish returning to Soos Creek Hatchery on the Green 
River from 1949 until adequate numbers of return were accomplished in 1955. Thereafter, the 
stock was self-sustaining with the exception of years in which Chinook returns were low. In a 
low return year (1961), eggs from Soos Creek Hatchery and Issaquah Hatchery were transferred 
to the UW ARF Hatchery (Fish Transfer Records, University of Washington). The fish were 
initially selected for early return (return in three years as opposed to four), early migration, and 
high fecundity, but the conscious selection program was discontinued in the mid-60s. Past 
selection protocols and potentially rearing conditions at the UW ARF Hatchery had led to 
observations of phenotypic differences between hatchery stocks and natural stocks in the target 
area. 
 
UW Coho Hatchery 

Starting in the 1950’s, the UW ARF hatchery produced coho and Chinook runs for research 
purposes. Sources of coho broodstock were a mixture of coho stocks with a priority given to 
returning UW ARF hatchery stock. Issaquah Hatchery stock strays that entered the trap were also 
used as broodstock. 
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Cedar River Sockeye Program 

As mitigation for the removal of water and restriction of access of sockeye in the Cedar River 
above Landsburg Dam, and in agreement with Landsburg Mitigation Agreement, a hatchery 
program for sockeye fry supplementation began in 1991. The sockeye population within Lake 
Washington and Cedar River were introduced from various sources beginning in 1917.  
Subsequent introductions occurred in 1935 from Baker Lake, and in 1944, 1950, and 1954 from 
Cultus Lake.  The Issaquah Hatchery started as a sockeye hatchery in 1937 and continued 
through at least 1962. A self-sustaining population of natural spawning sockeye in Cedar River 
has existed without further introductions since 1955 (woodly 1966, Royal and Seymour 1940)  
 
A supplementation program in the Cedar River began in 1991, in response to declining sockeye 
within Cedar River and to mitigate for habitat loss associated with the Landsburg Dam and to 
augment natural spawning on the Cedar River (HCP and LMA references).  An interim hatchery 
was built with the capacity to produce 18.7 million eggs, but the release of unfed fry did not 
exceed 15,500,000. Broodstock for the hatchery originated from the local spawning population. 
For the first two years of the program, adult broodstock were captured by gillnet in the lower 
river at various locations. From 1993 to 2007, WDFW collected broodstock at a temporary trap 
and weir (RM 6.5). In fall 2008, Seattle Public Utility (SPU) completed a new access road and 
other amenities to allow for the installation of a floating resistance-board weir and trap (RM 1.7). 
The permanent hatchery was completed in 2011 and has the capacity to incubate, rear, and 
release up to 34 million fry. 
 
2.5. Effects on ESA Protected Species and on Designated Critical Habitat 

This section describes the effects of the Proposed Action, independent of the Environmental 
Baseline and Cumulative Effects. The methodology and best scientific information NMFS 
follows for analyzing hatchery effects is summarized in Appendix A and application of the 
methodology and analysis of the Proposed Action is in Section 2.5.2. Under the ESA, “effects of 
the action” are all consequences to listed species or critical habitat that are caused by the 
proposed action, including the consequences of other activities that are caused by the proposed 
action. A consequence is caused by the proposed action if it would not occur but for the proposed 
action and it is reasonably certain to occur. Effects of the action may occur later in time and may 
include consequences occurring outside the immediate area involved in the action (see 50 CFR 
402.17). In our analysis, which describes the effects of the proposed action, we considered 50 
CFR 402.17(a) and (b). 
 
NMFS’ status review update on Puget Sound salmon and steelhead reports that the abundance of 
Steelhead in Sammamish and Cedar rivers (undetectable and low respectively) and been 
decreasing since 2006 (LWGI_SalmonSyn123108.pdf).  Similarly, interactions reported by co-
managers at Cedar River Weir, Issaquah Hatchery Weir, and Ballard Locks (Table 21), and 
reporting of total escapement of Cedar River winter steelhead natural spawners by co-managers 
(Table 15) also indicate that the population within the watershed is low.  Given these reported 
occurrences, encounters would be unexpected for many factors and thus there would be no 
adverse effects for those factors.  Therefore we only discuss steelhead effects for factors where 
effects could be reasonably expected to occur. Additionally, the Willow Creek hatchery coho are 
released into “WRIA 8 tributaries,” these streams are tributaries to Puget Sound, and are not 
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known to contain listed fish. Thus, they were excluded from our analysis of predation and 
competition in freshwater. 
 
2.5.1. Factors That Are Considered When Analyzing Hatchery Effects 

NMFS has substantial experience with hatchery programs and has developed and published a 
series of guidance documents for designing and evaluating hatchery programs following best 
available science (Hard et al. 1992; McElhany et al. 2000; NMFS 2004; 2005c; Jones 2006; 
NOAA 2008; NMFS 2011b). For Pacific salmon, NMFS evaluates extinction processes and 
effects of the Proposed Action beginning at the population scale (McElhany et al. 2000). NMFS 
defines population performance measures in terms of natural-origin fish and four key parameters 
or attributes; abundance, productivity, spatial structure, and diversity and then relates effects of 
the Proposed Action at the population scale to the MPG level and ultimately to the survival and 
recovery of an entire ESU or DPS. 

“Because of the potential for circumventing the high rates of early mortality typically 
experienced in the wild, artificial propagation may be useful in the recovery of listed salmon 
species. However, artificial propagation entails risks as well as opportunities for salmon 
conservation” (Hard et al. 1992). A Proposed Action is analyzed for effects, positive and 
negative, on the attributes that define population viability: abundance, productivity, spatial 
structure, and diversity. The effects of a hatchery program on the status of an ESU or steelhead 
DPS and designated critical habitat “will depend on which of the four key attributes are currently 
limiting the ESU, and how the hatchery fish within the ESU affect each of the attributes” (70 FR 
37215, June 28, 2005). The presence of hatchery fish within the ESU can positively affect the 
overall status of the ESU by increasing the number of natural spawners, by serving as a source 
population for repopulating unoccupied habitat and increasing spatial distribution, and by 
conserving genetic resources. “Conversely, a hatchery program managed without adequate 
consideration can affect a listing determination by reducing adaptive genetic diversity of the 
ESU, and by reducing the reproductive fitness and productivity of the ESU”. 

NMFS’ analysis of the Proposed Action is in terms of effects it would be expected to have on 
ESA-listed species and on designated critical habitat, based on the best scientific information 
available. This allows for quantification (wherever possible) of the effects of the six factors of 
hatchery operation on each listed species, which in turn allows the combination of all such 
effects with other effects accruing to the species to determine the likelihood of posing jeopardy. 

Information that NMFS needs to analyze the effects of a hatchery program on ESA-listed species 
is typically provided in the form of an HGMP. HGMPs are reviewed by NMFS for their 
sufficiency before formal review and analysis of the Proposed Action can begin. Analysis of an 
HGMP or Proposed Action for its effects on ESA-listed species and on designated critical habitat 
depends on six factors. These factors are: 

1. The hatchery program does or does not remove fish from the natural population and use 
them for hatchery broodstock 

2. Hatchery fish and the progeny of naturally spawning hatchery fish on spawning grounds 
and encounters with natural-origin and hatchery fish at adult collection facilities 
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3. Hatchery fish and the progeny of naturally spawning hatchery fish in juvenile rearing 
areas, migratory corridor, estuary and ocean 

4. RM&E that exists because of the hatchery program 
5. The operation, maintenance, and construction of hatchery facilities that exist because of 

the hatchery program 
6. Fisheries that exist because of the hatchery program, including terminal fisheries 

intended to reduce the escapement of hatchery-origin fish to spawning grounds 
NMFS’ analysis assigns an effect category for each factor (negative, negligible, or 
positive/beneficial) on population viability. The effect category assigned is based on: (1) an 
analysis of each factor weighed against the affected population(s) current risk level for 
abundance, productivity, spatial structure and diversity; (2) the role or importance of the affected 
natural population(s) in salmon ESU or steelhead DPS recovery; (3) the target viability for the 
affected natural population(s) and; (4) the Environmental Baseline, including the factors 
currently limiting population viability. For more information on how NMFS evaluates each 
factor, please see Appendix A. 

2.5.2. Analysis of the Effects of the Proposed Action 

2.5.2.1. Factor 1. The hatchery program does or does not remove fish from the natural 
population and use them for broodstock 

Chinook Salmon Broodstock 

NMFS considers the physical process of collecting hatchery broodstock, and the effect of the 
process on ESA-listed species, under Factor 2. In the proposed action, the Issaquah Hatchery 
Chinook program would operate as a segregated program without removing fish from the natural 
population, and as describe in section 1.3.1, would incorporate fish from the natural population 
when operating as a genetically-linked program (Table 3). Typically, removing fish from the 
local natural population is viewed as a negative effect for salmon because removing mature 
natural-origin adults from the spawning grounds can reduce the effective genetic size and Ne of 
the population, through a reduction in the number of available natural spawners. The Fall 
Chinook Salmon hatchery program at Issaquah Hatchery will not remove fish from the local 
natural populations for broodstock while operating as a segregated program. In some cases, 
hatchery programs also reduce in-river mortality experienced by juveniles the programs rear and 
release as smolts.  The result is a higher survival to the smolt stage for the overall populations, 
than would have otherwise been measured through natural spawning alone. This would allow 
some spawning by hatchery-origin returns, the additional contribution of hatchery spawners to 
natural escapement for this population should mitigate demographic risk. Thus, some genetic 
material from those natural-origin Chinook salmon spawned in the hatchery is likely to remain in the 
natural environment. When the program transitions into a genetically-linked program NOR fish 
would be included in broodstock and spawned in the hatchery, thereby leading to higher egg-to-
smolt survival rates than would be experienced in the wild. The net effect is anticipated to be an 
increase in abundance.  Thus, the effects of this factor are considered beneficial to the Sammamish 
population.  The potential adverse effects of naturally spawning hatchery fish are discussed in the 
following subsection. 
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2.5.2.2. Factor 2. Hatchery fish and the progeny of naturally spawning hatchery fish on 
spawning grounds 

The proposed hatchery programs pose both genetic and ecological risks. There is some benefit to 
the species from the integrated and genetically linked programs designed to supplement the 
ESA-listed Sammamish Chinook salmon population. This supplementation is designed to 
increase population abundance and productivity by increasing the number of adult returns. 
Thus, NMFS believes that the net effect of the is factor on listed species is beneficial with 
respect to the Chinook programs, while the coho programs are likely to have a small negative 
effect on listed species through ecological effects.  The potential of adverse genetic effects on 
listed Chinook salmon and steelhead populations are discussed in the following subsection. 
 
The coho and sockeye salmon programs do not have any genetic effects on listed Chinook 
salmon and steelhead populations because these species do not interbreed. However, there is the 
potential for adverse ecological risks of redd superimposition, spawning site competition, and 
predation between species. Thus, NMFS believes that the net effect of the Sockeye and Chinook 
programs on listed species is beneficial, while the coho programs are likely to have a small 
negative effect on listed species through ecological effects. 
 
2.5.2.2.1. Genetic Effects 

For each ESA-listed program, NMFS considers three major areas of genetic effects: within-
population diversity, outbreeding effects, and hatchery-influenced selection. However, the coho 
and Sockeye programs do not incorporate listed fish into broodstock, therefore we will only 
address genetic effects related to the Fall Chinook population on listed Chinook populations. 
 
NMFS has not adopted Hatchery Scientific Review Group (HSRG) gene flow (i.e., pHOS, 
pNOB, PNI) recommendations per se. However, at present the HSRG recommendations and the 
5% (or 0.05) stray recommendation (from segregated programs) from (Grant 1997) are the only 
acknowledged quantitative recommendations available, so NMFS considers them a useful 
screening tool. For a particular program, NMFS may, based on specifics of the program, and 
environment, consider a pHOS or PNI level to be a lower risk than the HSRG would but, 
generally, if a program meets HSRG standards, NMFS will typically consider the risk levels to 
be acceptable.1 
 
For integrated programs, genetic effects on the targeted natural-origin population as well as 
populations, other than the target population, in which program fish return are considered To 
perform our analysis for the target population, we used a model developed by (Ford 2002) and 
expanded by (Busack 2015) that considered the best available information for the target 
population to determine the current and anticipated future PNI of the population based on the 
applicants’ proposed proportion of natural-origin broodstock (pNOB) and the pHOS, as well as 
pHOS composition, in natural spawning areas. A PNI of > 0.5 indicates that natural selective 
forces are equivalent or greater than hatchery-influenced selective forces, and for a tier 3 
population under NMFS’ Population Recovery Approach (NMFS 2010) the long-term goal has 
not been stated. 
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For segregated programs, genetic effects are assessed by considering how many fish from each 
program spawn naturally. Because supplementation of the natural population is not typically an 
objective for this type of program, the number/proportion of hatchery-origin spawners spawning 
naturally should ideally be zero, since the hatchery population will often be highly adapted to the 
hatchery environment. However, this is not a realistic goal, as a practical matter, and if the 
population is to reach necessary abundance levels. As explained in the appendix, the Hatchery 
Scientific Review Group (HSRG) has developed guidelines for allowable pHOS levels in 
natural-origin populations, scaled by the population’s conservation importance, recommending a 
maximum of 5% in “primary” populations, 10% for “contributing” populations, and at a level 
required to maintain “sustaining” populations (e.g., HSRG 2014).  When NMFS analyzes 
proposed actions, it evaluates impacts at the individual population scale for their effects on the 
viability of the ESU. Accordingly, impacts on Tier 1 populations would be more likely to affect the 
viability of the ESU as a whole than similar impacts on Tier 2 or 3 populations. 
 

1 The only exception to date is the case of steelhead programs using highly domesticated broodstocks, where NMFS 
has imposed more stringent guidelines ((e.g.,NMFS 2016c)). 

                                                 

 

2.5.2.2.1.1. Within-population Diversity and Hatchery-influenced Selection 

Fall Chinook salmon program  

In terms of conservation of within-population genetic diversity, the Proposed Action is likely a 
benefit to the Sammamish River Fall Chinook salmon population. The natural-origin population 
size is considerably less than decades ago and currently the population is below the critical 
threshold. However, the population has remained in the hundreds annually, likely because of the 
continued contributions to population abundance from the hatchery program.  It is recognized 
that Hatchery-origin fish can positively affect the status of an ESU by contributing to the 
abundance of natural populations in the ESU (70 FR 37204, June 28, 2005, at 37215). 
 
A long-standing guideline for conservation of genetic diversity is that although short-term dips to 
smaller sizes can be sustained without serious loss of genetic diversity, the effective population 
size should be 500 or more over the long term (Section 5). Assuming a generation time of four 
years, which is reasonable for Issaquah Fall Chinook salmon, an average of 125 effective 
spawners/year would be required. 
 
2.5.2.2.1.2. Gene Flow Assessment for the Lake Washington fall Chinook Salmon Population 

There are two fall Chinook salmon populations within the Lake Washington Basin: Cedar River 
and Sammamish River (Ruckelshaus et al. 2006). The potential negative genetic effects from the 
Issaquah Creek and UW ARF Fall Chinook Salmon programs are considered along with the 
demographic benefit of increasing abundance.  To perform our analysis, we used a model that  
considered the best available information for the target population to determine the current and 
anticipated future PNI of the population based on the applicants’ proposed proportion of natural 
origin broodstock (pNOB) and the pHOS in natural spawning areas.  A PNI of > 0.5 indicates 
that natural selective forces are equivalent or greater than hatchery-influenced selective forces. 
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The targets for a tier 3 population, including the populations in this opinion are not a priority for 
recovery compared to Tier 1 and 2 population for which we have established PNI targets. 
 
Cedar River pHOS is expected to range between 35% and 46% under average natural-origin 
abundance and release Scenarios 1 and 2 (Table 17; Haggerty 2021). Sammamish Basin PNI is 
expected to range from just over 5% to just over 40% under release Scenario 2 when adult 
natural-origin abundance ranges from 100 to 900.  Sammamish Basin PNI is expected to range 
from 7% to just over 62% under release Scenario 3 when adult natural-origin abundance ranges 
from 100 to 900.  
 
The number of unmarked fish passed upstream of the Issaquah Creek Hatchery weir is expected 
to range from 91 (3 million release from Issaquah Creek Hatchery and 100 natural-origin adult 
Chinook to Sammamish Basin) to 293 (5.5 million release from Issaquah Creek Hatchery and 
499 natural-origin adults to Sammamish Basin (Figure 7). 
 
 In the future we anticipate pHOS to increase by up to 15 percentage points in the Cedar River.  
The best available data also suggest that PNI in the Sammamish River is < 0.06. We anticipate 
that, in the future, PNI would increase up to 0.4 (Table 17).  Over the course of the consultation, 
the co-managers have agreed to some key changes in the fall Chinook program operation that are 
anticipated to result in a substantially higher PNI value in the Sammamish River, compared to 
the current value. 
These program modifications are: 
 

• Genetically linked integrated and segregated program components, which requires use of 
integrated program component returns for segregated component broodstock (for details 
see Section 1.3.1) 

• Creation of a natural production emphasis area in Issaquah Creek, where unclipped fall-
run Chinook fish are passed above the weir 

• 100% marking of integrated component fish with a CWT to enable easy identification as 
hatchery fish from that program component. When the program is operating as a segregated 
program (as described in section 1.3), 100% of unmarked adults will be passed upstream.  
When the program is operating as a genetically-linked program, a minimum of 50% of NOR 
will be passed upstream.  

• Further improved quality control measures to decrease the miss-clip rate to ≤ 1% 
 
However, the reality of the degraded habitat in the Sammamish River, the difficulties of fish passage 
at Ballard Locks, and the intention to produce more fish to expand the prey base for resident ESA-
listed killer whales make achieving this goal extremely difficult, although, through some major 
modifications to the current fall Chinook salmon program, the population could achieve a much 
improved PNI (Table 17) when the program transitions to a genetically-linked program. NMFS 
expects that there will be a period of relatively low PNI in the Sammamish River, similar to past 
values (< 0.06), before the benefits of these program modifications can begin to be realized. The 
population is still likely to achieve vast improvements in PNI under the Proposed Action; an increase 
in PNI from 0.1 currently to ~ 0.4 over the long-term and in the near term, the existence of the 
hatchery program ensures that fish will still exist in the Sammamish River if natural-origin returns 
continue to decrease. 
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Segregated production was evaluated using a range of hatchery releases and hatchery release 
locations to evaluate the variation of expected effects on the Sammamish River and Cedar River 
natural-origin fall Chinook salmon populations  (Table 17).  We assessed several scenarios to 
capture a range of potential releases from release sites listed in Table 4 full details are available 
in Haggerty 2021.  Scenario 1 included up to 5 million subyearling released at Issaquah Hatchery 
and 1 million released at UW ARF. Scenario 2 included up to 3 million subyearlings released at 
both Issaquah Hatchery and UW ARF.  The projected pHOS in the Cedar River would increase 
from current levels by 10 percentage points. 
 
We relied on a number of assumptions to populate the parameters of the model. We used a mixed 
log-linear straying model (Figure 8 developed by Schaffler (2020) to route Chinook salmon 
based on past terminal run-sizes (TRS) and adult escapement within three spawning areas: Cedar 
River, Bear Creek, and Issaquah Creek (below Issaquah Hatchery).  The relationship between 
TRS and straying to the different spawning aggregations is depicted in Figure 8, (Schaffler 
2020). We assumed pre-spawn mortality of 18% for natural-origin fish held for broodstock at the 
Issaquah Hatchery.  We also assumed that SAE (smolt-to-adult escapement) values from 
Issaquah Hatchery would reflect a 5-year average (0.237%) or 10 year average (0.231%) and that 
SATR values would reflect a 5-year average (0.248) or a 10 year average (0.267). The model 
assumed SAE value of 0.5023 and SATR value of 0.565 for UW ARF. Further, co-managers 
agreed to decrease the mis-clip rate at the facility; therefore, we used a miss clip rate of 1% 
(current miss clip rate is ~2.9%). In addition, these calculations incorporated an additional 10% 
of juveniles produced on top of the program release goal (Haggerty 2021). 
 

 
Figure 8: Lake Washington Chinook salmon terminal run-size projected hatchery stray 

rates to various spawning aggregations (Haggerty 2021). 
 
The most recent 5- and 10-year pHOS in the Cedar River has averaged 30% and 27%, 
respectively (Table 17).  Cedar River pHOS is expected to range between 40% and 46% under 
average natural-origin abundance and release Scenarios 1 and 2.  Sammamish Basin PNI is 
expected to range from just over 5% to just over 40% under release Scenario 1 when adult 
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natural-origin abundance ranges from 100 to 900.  Sammamish Basin PNI is expected to range 
from 7% to just over 62% under release Scenario 2 when adult natural-origin abundance ranges 
from 100 to 900 ( see Figure 11 and 12 in Haggerty 2021). 
 

Table 17: Current and proposed Proportionate Natural Influence (PNI) for the natural fall 
Chinook salmon population in Sammamish and Cedar Rivers under various release 
scenarios. pHOS =  proportion of hatchery-origin spawners. 

Scenario pHOS Cedar 
River (%) 

pHOS 
Sammamish1 

River (%) 

PNI2  Sammamish River  pNOB 

   Segregated Genetically-
linked 

Genetically-
linked 

Current3 30 87 NA < 0.063  
1 40-42 45-88 .06 - .09 .22-.42 64-66 
2 43-46 39-85 .06-.11 .38-.61 73-66 

1 The ESU population is called Sammamish River and consists of spawning in Bear Creek and 
Sammamish river watershed (including Issaquah Creek).  The pHOS was calculated from Bear Creek 
spawners. 
2 Calculated as an aggregate, expanded data is available in (Haggerty 2021) 
3 Currently, Issaquah Creek fall Chinook program is operating as an integrated program. 

                                                 

 
2.5.2.2.1.3. Lake Washington Chinook salmon outbreeding genetic effects 

The genetic diversity of the Lake Washington Chinook salmon populations could be adversely 
affected if the proposed hatchery programs incorporated as broodstock Chinook salmon originated 
from other Puget Sound populations. Inter-mixing the Sammamish or Cedar River stocks with other 
Puget Sound Chinook salmon populations could decrease genetic differences between, and 
uniqueness of, the currently distinct, independent population in the ESU. Based on these CWT 
recoveries and expanded adult Chinook salmon during RYs 2004-2010, Issaquah Hatchery 
Chinook salmon made up 99.8% of the returning adults to the hatchery and the remaining 0.2% 
were from hatchery programs that were not in the basin (Table 18). We would expect similar 
levels of contributions in the future with one exception (Haggerty 2021). 
 

Table 18: Coded-wire tag (CWT) data and estimated adult returns from each production 
hatchery into each watershed source: RMIS database. 

Fall Chinook Salmon Hatchery 
recipient watershed 

Observed 
CWTs 

Adjusted 
Estimated 
CWTs 

M1 Adult 
Equivalents 

  
Cedar River 

      

Tulalip Hatchery 1 2 32 
Grovers Creek Hatchery 3 7 7 
Issaquah Creek Hatchery 8 19 214 
Portage Bay Hatchery (UW ARF) 3 7 17 
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Totals 15 35 270 
        
  
Sammamish River: 

      

Gorst Creek Hatchery 1 7 68 
Grovers Creek Hatchery 6 12 14 
Issaquah Creek Hatchery 116 363 3,959 
Portage Bay Hatchery (UW ARF)     3 

 Totals  123 382 4044 
  
Issaquah Hatchery: 

      

Tulalip Hatchery 1 1 3 
Forks Creek Hatchery 1 1 11 
Grovers Creek Hatchery 1 2 2 
Issaquah Hatchery 2,421 2,596 28,039 
Minter Hatchery 1 1 1 
Portage Bay Hatchery (UW-ARF) 4 5 13 
Soos Creek Hatchery 1 1 1 
Voights Creek Hatchery 2 2 17 

Totals 2,432 2,609 28,087 
 
 
The Fall Chinook salmon program could also pose risk to other Puget Sound Chinook salmon 
populations if fish from these programs comprise a substantial portion of the natural spawners in 
those populations or of the broodstock in other programs that influence those populations. 
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2.5.2.2.2. Ecological Effects 

2.5.2.2.2.1. Adult nutrient contribution 

The return of hatchery fish likely contributes nutrients to the action area. Decaying carcasses of 
spawned adult hatchery-origin fish would contribute nutrients that increase productivity in the 
Lake Washington watershed, providing food resources for naturally produced Chinook salmon. 
Diminished numbers of salmonids returning to spawn in most Puget Sound watersheds have 
resulted in nutrient deficiencies compared to historical conditions, affecting salmon and 
steelhead productivity potential. Adult salmon spawning escapements have substantially declined 
to a fraction of their historical abundance in many watersheds, raising concerns about a lack of 
marine-derived nutrients returning back to the systems in the form of salmon carcasses. 
Historically, salmonids themselves were an important source of nutrients to both riverine and 
riparian ecosystems (WRIA 2000). 
 
Estimates of naturally spawning hatchery-origin salmon and steelhead are depicted in Table 19. 
It was estimated that these naturally spawning hatchery-origin salmon would contribute a total of 
198.5 kg of phosphorous to the action area annually. 
 
The transport by anadromous fish of nutrients from the marine environment to freshwater is 
important because temperate freshwater environments like that of the action area are typically 
low in available nutrients and relatively unproductive (Cederholm et al. 2000). Thus, hatchery-
origin fish increase phosphorous concentrations, which likely compensates for some marine-
derived nutrients lost from declining numbers of natural-origin fish. 
 

Table 19. Total phosphorous imported by adult returns from the proposed hatchery 
programs based on the equation (Imports = hatchery adults*mass*phosphorous 
concentration) in (Scheuerell et al. 2005) 

1 Smolt-to-Adult Escapement (SAE) from smolt trap in Cedar River, Sockeye are calculated as a fry-to-adult 
Escapement. Coho calculated as SAR/Escapement  
2 Calculated by multiplying the release number by the smolt to adult return (SAR) values. 
3 Release size was calculated as the total coho released (763,070) assuming a 3% stray rate, 3K spawners that are 
passed upstream when they reach the Issaquah weir and another 410,000 fish are released through educational 
purposes and return to the natural environment. 

                                                 

 

Program Release 
Size 

SAE 
(%)1 

Estimated 
number of 
hatchery-

origin adults2 

Adult 
Weight (Kg) 

Phosphorous 
Concentration 

Phosphorous 
Imported 

Kg/Y 

Fall Chinook  6,000,000 0.261 15,600 5.5 0.0038 18 
Coho 
hatchery 

740,000 0.016 14,4453 3.2 0.0038 176 

Cedar River 
Sockeye 

34,000,000 0.001 34,000 3.0 0.0038 388 
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2.5.2.2.2.2. Spawning ground competition and redd superimposition  

Chinook Salmon 

Hatchery-origin adult salmon produced through the within-basin hatchery salmon programs that 
escape to spawn naturally have the potential to adversely affect listed Chinook salmon through 
competition for spawning sites and redd superimposition.  Redd superimposition has been reported to 
occur in salmonids when spawning habitats become limited, whether by habitat limitations or high 
spawner abundance and has also has been inferred as a major cause of density-dependent embryo 
mortality through egg displacement (Fukushima et al. 1998). 
 
The natural origin geometric mean for returns to Cedar river is 659 and Sammamish river is 161 
(Table 10).  The expected projected hatchery escapement as presented in section 2.5.2.3.1.1 under the 
modeled scenarios there would be 567 to 717 hatchery origin fish expected in Cedar River. 
There would be 1327-1753 hatchery origin fish expected in Sammamish/Issaquah Rivers (Haggerty 
2021). The total recovery goal for each population is 2000 fish and current abundance plus the 
projected hatchery escapement is below this target. Thus, it is likely that, during most years, the 
watershed is under-seeded with naturally spawning Chinook salmon, making competition for 
spawning sites with and redd superimposition by hatchery Chinook salmon unlikely to occur.  
 
Although Sockeye and Chinook salmon overlap in spawning habitat, the larger sized Chinook spawn 
in deeper water where water velocity is faster (Kondolf and Wolman 1993).  Therefore, effects of 
competition for spawning sites and/or redd superimposition are expected to be low while the habitat 
is underseeded. The relationships between Chinook productivity (migrants/spawner) and sockeye 
spawning escapement for BY 1998 through 2016 as plotted in Figure 9 suggests that the 
increased numbers of sockeye salmon are not decreasing the number of juvenile Chinook 
migrants per adult spawner, which could be expected if redd superimposition were to occur.  The 
second and third largest productivity of Chinook were in years when sockeye escapements 
exceeded 75,000.  In the proposed action hatchery origin Sockeye escapement would range 
12,000 to 68,000 adults at maximum production.  The maximum escapement would fall within 
the range of values depicted in figure 9 suggesting that based on current and reasonable 
foreseeable conditions, the density-dependent effects of redd superimposition are unlikely to 
occur. 
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Figure 9: The relationship between Sockeye spawning escapement and juvenile Chinook 

migrants per spawner for brood years 1998 through 2016. Score database 
 
Coho Salmon 

Coho and Chinook have always existed in the watershed together but spawn timing and spawning 
habitat preference between coho and Chinook salmon differ. Chinook enter the watershed in July – 
early September and coho return in late September – October (Table 20). Coho tend to spawn in 
areas of mid-velocity water with small to medium sized gravels and Chinook tend to spawn in the 
mainstem where water flow is high and larger gravel sizes are present. Natural origin Chinook spend 
a few days or months in natal streams before entering Lake Washington in the spring, whereas 
juvenile coho rear in their natal streams for up to 1 year before entering Lake Washington as 
parr. It is thought that coho generally move through the lake and into Shilshole Bay more quickly 
than Chinook salmon because of their large size upon entry into Lake Washington, thus reducing 
the potential for overlap in time and space which would lead to predation. Therefore, effects of 
competition for spawning sites and/or redd superimposition are expected to be low given the life 
histories and use of habitat at different life-stages by these species Table 20. 
 
Steelhead 

Adult salmon produced by the hatchery programs that escape to spawn naturally do not have the 
potential to adversely affect listed steelhead through competition for spawning sites and redd 
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superimposition. Natural-origin returns of winter steelhead in Lake Washington watershed have 
been very low over the past decade and overall the population has been in decline since 2006 
(Table 11 Table 12 Table 15). Furthermore, Chinook salmon spawn from mid-September 
through early-November (Table 20), before the earliest spawning steelhead historically have 
entered the river as returning adults. Sockeye salmon return to freshwater from mid-June through 
July and Coho return from late August through early October.  Both spawn before Steelhead 
begin freshwater entry. Thus, there are unlikely to be any competition and redd superimposition 
effects of hatchery salmon on winter steelhead due to temporal separation. Sufficient surplus fish 
above the escapement goal of 350,000 sockeye, sport and tribal fishing seasons will be opened. 
 

Table 20. Terminal area or river entry timing (light blue), spawn timing (black) for Lake 
Washington watershed Chinook, sockeye, and steelhead populations. 

Species Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 

Chinook 
salmon                  

Sockeye                    
Winter 
Steelhead1             

Winter 
Steelhead                       

Coho2                 
 

1 Recent declines footnote for steelhead 
2 Arrival based on counts from Ballard Locks by MIT and WDFD Source: 
https://wdfw.wa.gov/fishing/reports/counts/lake-washington#chinook 

                                                 

 
 
2.5.2.2.3. Disease 

Adults returning back to hatchery facilities can have pathogens they become infected with upon 
their return to freshwater or that may have contracted during their juvenile rearing and 
outmigration. For programs in the Lake Washington watershed, the same pathogens detected in 
the juveniles were detected in the returning adults, Flavobacterium psychrophilum, F. 
columnare, F. branchiophilum, Aeromonas salmonicida, Ichthyopthirius multifiliis, Ichthyobodo 
spp., Gyrodactylus spp., Trichodina spp. were all detected for returning adults collected for 
broodstock. These pathogens are all native to the Lake Washington watershed and did not result 
in any disease outbreaks in adults over the past year. Adults are also routinely screened for viral 
pathogens, such as infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic 
necrosis virus (IPNV), but none were detected over the last three years. Implementation of co-
manager fish health protocols minimize the risk of fish disease pathogen transfer and amplification 
associated with salmon production through the programs. Based on the endemic state of the 
pathogens and the lack of outbreaks, risk of disease transmission and amplification from 
returning adults is low. 
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2.5.2.2.4. Adult Collection Facilities 

The operation of weirs and traps for broodstock collection may result in the capture and handling 
of both natural- and hatchery-origin Chinook salmon (Table 21). A seasonal weir may also be 
installed on Bear Creek as backfill when sockeye broodstock collection targets are not met by 
collection at Cedar River weir and Landsburg Dam, which would involve the capture and 
handling of sockeye salmon to meet that target. Additional Cedar River locations may be used 
for sockeye broodstock collection. Generally speaking, weir technology has improved greatly 
over the previous couple of decades and the technology is now widely and effectively applied 
throughout the Pacific Northwest (NMFS 2010; NMFS 2011d). Bear Creek weir would be 
operated in a manner consistent with this current standard application, and would continue to be 
so operated. Further, the weir is not permanent and would be deployed seasonally to provide 
backfill when the Sockeye would not meet collection targets described in (Table 2). 
 
Take resulting from collection at either weir would not result in adverse effects on the listed 
population because 1) the weirs are designed to allow juvenile passage, and natural-origin adults 
are passed upstream when not required for broodstock 2) weir operation guidelines and 
monitoring of weirs by the co-managers minimize the delays to and impacts on fish and 3) 
deployment/use of the weir is to supplement broodstock and therefore would not occur every 
year. 
 

Table 21. Number of ESA-listed Chinook salmon handled by origin for all program 
facilities. Maximum incidental mortalities in any given year, if any, are shown in 
parentheses and exclude those collected and held for broodstock. 

Facility Origin Chinook Salmon Steelhead 

Average; range 
handled 
(average 

incidental 
mortalities) 

Proposed 
handle 

(incidental 
mortality) 

Average; 
range 

handled 
(average 

incidental 
mortalities) 

Proposed 
Handle 

(incidental 
mortality) 

Issaquah 
Creek 
Hatchery 
Weir1 

Natural 154; 49-304 (26) 100% (30%)2 0; (0) 10 (1) 
Hatchery 2828; 1794-4213 

(498) 
12800 (2450) 0; (0) 10 (1) 

UW ARF3 Natural 1849; 1069-2769 
(NA) 

200 (5)  N/A 10 (1) 
Hatchery 4000 (80)  N/A 10 (1) 

Cedar R. 
Weir4 

Natural 25; 3-53 (6) 1570 (31) 0; (0) 10 (1) 
Hatchery 7; 0-31(0)  1000 (20) 0; (0) 10 (1) 

Bear Creek 
Weir5 

Natural N/A 76 (2)  N/A 10 (0) 
Hatchery N/A 531 (11) N/A 10 (0) 

Ballard 
Locks6 

Natural N/A 459 (9) N/A 10 (1) 
Hatchery N/A 1680 (34)  N/A 10 (1) 
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1 Issaquah Chinook salmon data set from 2010-2018, includes adults and jacks.  Proposed increase in hatchery 
handle and mortality results from increase in size of program.  
2 The Fall Chinook program would handle 100% of the NOR that return to Issaquah weir (the primary sampling 
location for the Chinook program). Those NORs that are not used in brood during operation of the segregated 
program or are above brood needs during the operation of the genetically-linked program would be passed upstream 
to access spawning habitat (section 1.3.1) 
3 No information available on origin (hatchery or natural) or mortality prior to program ending with releases in 2003. 
Projected handle and mortality based on maximum holding capacity of UW ARF holding pond. 
4 Cedar River Weir data for the average handle and mortality is for the years 2011-2018.  Proposed handle is higher 
than the historical average due to the expectation that implementation of a more effective weir will result in 
increased handling of Chinook salmon.  The projected handle is the maximum number of spawners from 2010-2018.  
Projected mortality assumes a 2% mortality rate.  
5 Potential new broodstock collection site for sockeye salmon.  Projected Chinook handle is the maximum number 
of natural or hatchery-origin spawners from 2010-2018.  Projected Chinook salmon mortality assumes a 2% 
mortality rate of fish handled. 
6 Potential new broodstock collection site for sockeye and Chinook salmon.  Chinook handle based on assumed 
ability to collect 50% of Issaquah broodstock objective of 3,360 at the Ballard Locks.  Projected Chinook salmon 
mortality is 2% mortality rate of fish handled. 

                                                 

 
2.5.2.3. Factor 3. Hatchery fish and the progeny of naturally spawning hatchery fish in 

juvenile rearing areas, migratory corridor, estuary and ocean 

Based on the science available to detect the effects of salmon hatchery releases in the ocean, and 
the releases from these programs relative to the total number of juvenile salmonids detected in 
the freshwater, estuary, and ocean, NMFS believes it is not possible to detect a measurable effect 
specific to this proposed action once these releases reach the ocean.  Thus, this analysis will only 
consider effects of juvenile hatchery fish in juvenile freshwater rearing areas. Further, Coho 
released from the educational program at Willow Creek Hatchery are released into streams that 
are a tributary to Puget Sound, and are not known to contain listed fish. Thus, they were 
excluded from our analysis of predation and competition in freshwater. The effects of this factor 
on all listed species considered in this opinion is negative, as discussed below. 
 
2.5.2.3.1. Competition and predation in rearing areas and the migratory corridor 

2.5.2.3.1.1. PCD Risk Model Analysis in Freshwater 

Chinook 
 
While competition and predation are important factors to consider, they are events that can 
rarely, if ever, be observed and directly calculated. However, these behaviors have been 
established to the point where NMFS can model these potential effects on the species based on 
known factors that lead to competition or predation occurring. Here, we used the PCD Risk 
model version 4.0.0 of (Pearsons and Busack 2012), to quantify the potential number of natural-
origin Chinook salmon lost to competition and predation from the release of hatchery-origin 
juveniles (for details see appendix section 5). 
 
For our model runs, we made a number of assumptions for some of the parameter inputs, 
consistent with all of the other consultations in which we use this model (Table 22; Section 5). 
We generally assumed a 100% population overlap between hatchery fish and ESA-listed natural-
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origin Chinook salmon when both populations were present in the habitats at the same time. We 
acknowledge that a 100% population overlap in microhabitats is likely an overestimation. Within 
Lake Washington, we varied the level of populations overlap based on entry timing proportions 
for each populations. We assumed that habitat complexity was low during residence/travel 
through the streams, rivers, and lakes at only 10% to account for habitat degradation in the Lake 
Washington watershed. 
 
We used habitat segregation estimates, maximum encounters per day, and dominance mode for 
most interactions based on (HETT 2014) database for hatchery programs of the same life stage 
and species (Table 22). However, because sockeye salmon programs are not present in the Upper 
Columbia River where the HETT team conducted their analyses, we decided to use a user-
specified dominance mode when modeling the sockeye salmon program in Lake Washington. 
Dominance mode 3 assumes an equal likelihood of dominance between hatchery and natural fish 
when fish are approximately the same size, and a higher likelihood when hatchery fish are larger 
(70-90%), and a lower likelihood when hatchery fish are smaller (0-30%)(Pearsons and Busack 
2012). However, literature suggests that sockeye salmon are less aggressive than other Pacific 
salmon and steelhead regardless of their size (Hoar 1954; Hutchison and Iwata 1997; Tatara and 
Berejikian 2012). Thus for the user-specific dominance mode (6) we used values of 0-10% 
dominance by hatchery sockeye salmon when the hatchery fish were smaller than natural-origin 
fish, and we used a value of 25% when hatchery sockeye salmon were equal or larger in size 
compared to natural-origin fish. 
 
The Lake Washington residency of the hatchery sockeye fry is also a unique aspect of the Lake 
Washington hydroography and the life history of this particular species (WDFW and 
Muckleshoot Indian Tribe 2019). A great deal of research has been conducted to understand the 
habitat requirements of juvenile Chinook and sockeye salmon in Lake Washington. Much of this 
work has been summarized in (U.S. Army Corps of Engineers 2008). This body of research 
found that Chinook salmon fry reside primarily within the littoral lake zone within the top 1 m of 
water. Larger juvenile Chinook salmon reside within the littoral zone, but still remain within 4 m 
of the water surface. In contrast, sockeye salmon fry inhabit the limnetic zone below 20 m in 
water depth. Sockeye salmon do ascend to shallower waters at night to feed, and may interact 
with larger Chinook salmon individuals during these night ascensions (Eggers 1978). Thus, we 
modeled a 90-95% habitat segregation between Chinook salmon and juvenile sockeye salmon. 
Feeding, growth, and proportions of juvenile Chinook with maximum daily rations from 
modeling work conducted by Koelher et al. 2006 suggested that under current conditions both 
naturally produced and hatchery-produced juvenile Chinook salmon were finding ample food in 
littoral habitats of Lake Washington.  Based on the lack of evidence of food availability limiting 
early growth of juvenile salmonids in Lake Washington, we modified the probability of weight 
loss from competitive interactions from the default value of 5% to 1%. 
 

Table 22. Parameters in the PCD Risk model that are the same across all programs.  

Parameter Value  
Habitat complexity 0.1  
Population overlap varied through space and time 
Habitat segregation 0.3 for conspecifics; 0.6 for other species 
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And 90-95% for Chinook/sockeye rearing 
in Lake Washington 

Dominance mode 3 Chinook and coho, 6 sockeye 
Maximum encounters per day 3 
Piscivory rate 0 sockeye; 0.002 Chinook; 0.0189 coho 
Predator:prey length ratio for predation 0.331 

1  Daly et al. (2014) 
                                                 

 
Because of the hydrography of the Lake Washington watershed, we conducted multiple runs of 
the model to account for the travel of hatchery species through lakes and streams. To do this, we 
conducted model runs from release site to Lake Washington. We then modeled their potential 
interactions in Lake Washington, and finally conducted a third model run when fish exited Lake 
Washington until they reached Puget Sound. 
 
For sockeye salmon, which rear in Lake Washington after release until they outmigrate as smolts 
the following spring, we conducted multiple model runs in Lake Washington. Immediately after 
their release as fry and fed fry, we modeled interactions with natural-origin juvenile Chinook 
salmon for a period of 107 and 45 days during the period of temporal overlap with lake rearing 
Chinook salmon; Chinook salmon fry spend one to four months during this phase. For the second 
model run, we assumed sockeye fry grew to a parr and pre-smolt size during their residency in 
Lake Washington in the absence of Chinook salmon. A third model run was conducted for a 90-
day period when pre-smolt sockeye were rearing in Lake Washington at the same time as age-0 
Chinook.  We ran a fourth model run where we combined yearling hatchery-origin sockeye with 
age-1+ hatchery-origin sockeye released during previous year. 
 
For coho salmon fry and parr releases, we assumed they resided in streams until emigrating as 
smolts the following year. Thus, we modeled this similarly to how we modeled overlap with 
sockeye fry in Lake Washington, 77 and 30 days of overlap with natural-origin Chinook salmon 
parr (mid-April through June) in the year of release, and 90 days overlap with natural-origin 
Chinook salmon fry in the year after release. 
 
In contrast to some previous consultations where we ran the model using numbers of natural-
origin fish that allowed the hatchery-origin fish to exhaust all interaction possibilities at the end 
of each day, we had data to inform the actual number and proportion of natural-origin juveniles 
of each species present in the Lake Washington watershed (Table 23). We believe this more 
closely mimics the reality of the Lake Washington watershed compared to how we have modeled 
abundance and proportions of natural-origin fish in previous consultations. For Chinook salmon, 
this was based on average data from the annual smolt trapping estimate reports for Cedar and 
Sammamish Rivers that occurred 2014 to 2018 (Lisi 2020). Because coho and Chinook salmon 
are released later in the spring (April-June) well after fry emergence, we assumed for our year-1 
model runs that all natural-origin Chinook were of a parr size when interactions with these 
species occurred. 
 
The number of natural-origin steelhead in Lake Washington is estimated to be in the single digits 
if not zero based on redd counts. Resident rainbow trout population abundance is unknown in the 
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Lake Washington watershed; therefore, it was not possible to meaningfully model effects from 
hatchery release programs on the steelhead population. 
 

Table 23. Age, size, and occurrence of listed natural-origin salmon and steelhead 
encountered by juvenile hatchery fish after release.  

Chinook Population Fry Parr Total 

Cedar River 667,762 27,870 695,632 

Sammamish River 46,127 41,951 88,078 
Sources: (Lisi 2020) 
 
Similar to the use of models for biological systems elsewhere, this model cannot possibly 
account for all the variables that could influence competition and predation of hatchery juveniles 
on natural juveniles. For example, the model assumes that if a hatchery fish is piscivorous and 
stomach capacity allows the fish to consume prey it will be natural-origin prey. The reality is 
hatchery-origin fish could choose to eat a wide variety of invertebrates, other fish species (e.g., 
shad, minnows), and other hatchery-origin fish in addition to natural-origin smolts. However, we 
believe that with this model we are estimating, to the best of our ability, a worst-case estimate for 
the effects on ESA-listed natural-origin juveniles Chinook salmon. 
 
The maximum numbers of juvenile fish lost for each species are shown in Table 24. This table 
also includes the potential increase of Chinook salmon from Issaquah Hatchery from three to six 
million (with a 10% overage), and the release of sockeye salmon at larger life stages. We then 
convert the number of juveniles lost to adult equivalents, using smolt-to-adult escapement (SAE) 
rates of 0.163% and 0.153% for Sammamish and Cedar River juvenile Chinook salmon. 

In doing so, we estimate that the equivalent of up to 14 Chinook salmon, or about 1.4% of the 
basin-wide Chinook salmon, run. Juvenile mortalities were accounted for at the population level 
based on release site and location along the migration routes for each hatchery release (Table 
23). This leads to an estimated 5% loss of Chinook salmon adult equivalents from the 
Sammamish population, and a 0.8% loss from the Cedar. 
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Table 24. Maximum numbers and percent of juvenile natural-origin salmon and steelhead 
lost annually to competition and predation with hatchery-origin fish released from 
the Proposed Action.  

Hatchery Species Cedar River Sammamish River 

Predation Delayed 
Mortality 

Predation Delayed 
Mortality 

Fall Chinook 
salmon (up to 6 
million) 

0 1030 
 

0 1366 

Coho salmon 858 228 1333 1458 
Sockeye salmon 0 2432 0 301 
Total Juveniles 
Lost 

4548 4458 

Adult 
Equivalents1 

7.4 7.3 

 
 
Fish that are not physiologically ready to migrate are not explicitly accounted for in our model at 
this time. Literature suggests that Chinook salmon subyearlings need to be at least 65 mm to 
tolerate the transition to saltwater (Kerwin 1999; Campbell et al. 2017). Fish that do not emigrate 
have the potential to compete with and prey on natural-origin fish for a longer period of time 
relative to fish actively outmigrating, and could impart some genetic effects when they spawn 
naturally. To address this potential effect, NMFS recommends that, of the subset of fish 
measured prior to release, the proportion below a size that are unlikely to immediately emigrate 
be reported. For sockeye salmon, no metric is proposed as these fish are released as fry, and their 
life history is to emigrate to the lakes soon after hatchery release, and rear in the lakes for up to 
one year. 
Steelhead 

Steelhead are not propagated as part of the proposed action, therefore there are no adult hatchery 
steelhead directly released into the watershed to compete or prey on the threatened natural-origin 
steelhead populations in the action area. Further, the geometric mean for natural origin steelhead 
in Sammamish River is undetectable and the geometric mean is low in Cedar River (discussed in 
section 2.2), and both populations have been declining overall since 2006. The PCDRisk model 
would not provide meaningful interpretation of interactions given a population size in this range.  
Thus, we qualitatively discuss effects of Fall Chinook, and Coho Salmon releases on natural 
origin Steelhead in this section. Additionally, there are no releases of Fall Chinook and coho in 
Cedar River, therefore we discuss the effects of predation and competition by Fall Chinook and 
coho salmon on the Steelhead population where they would be likely to co-occur in Lake 
Washington and the Ship canal. Overall, NMFS expects the risk of adverse interactions between 
hatchery-origin fish released from the programs and natural-origin Steelhead to be negligible, as 
discussed below. 
 
Although newly released hatchery-origin yearling Coho salmon may prey on juvenile steelhead 
and other juvenile salmon in the freshwater and marine environments (Hargreaves and 
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LeBrasseur 1985; Hawkins and Tipping 1999; Pearsons and Fritts 1999) yearling coho would be 
released as smolts.  Releasing fish as smolts is done as a measure to foster rapid emigration 
seaward and clearance from watershed areas where they may interact with natural-origin 
steelhead.  Sockeye fry that are released into Cedar river are unlikely to have substantial adverse 
ecological effects on listed juvenile natural-origin fish because of their small size relative to natural 
origin steelhead, and late release timing that minimizes spatial and temporal overlap with natural-
origin steelhead.  The Sockeye salmon fry enter Lake Washington from the Cedar River between 
mid-January and mid-May (Seiler et al. 2004b) and then move offshore to rear.  Overall, 
Steelhead smolts enter the lake in May and are thought to outmigrate quickly; limiting the 
temporal overlap between juvenile Steelhead and Sockeye in the lake. 
 
Measures are applied to limit the risk of adverse capture, handling, and release effects on 
steelhead through application of appropriate protocols described in the Proposed Action (section 
1.3). The earlier spawn timing for Chinook and coho salmon relative to steelhead makes adult 
fish interactions and substantial competitive or redd superimposition effects in listed steelhead 
spawning areas unlikely. 
 
2.5.2.3.2. Competition and predation in the estuary and ocean 

2.5.2.3.2.1. Spatial and Temporal Overlap 

The overlap among the life stages of juvenile salmon are depicted in Table 25 below. 
 

Table 25. Periodicity of juvenile salmon and steelhead entry (blue shading) and residence 
time (black shading) in Puget Sound estuaries. 

Species Life Stage/ 
history Dec Jan Feb Mar April May Jun Jul Aug Sep Oct Nov 

Chinook 
salmon 

Fry       
Parr           
Yearling                  

Sockeye Yearling                 

Steelhead Yearling                      
Coho1 Yearling                      

1 In the Lake Washington watershed, juvenile coho rear in their natal streams for up to 1 year before entering Lake 
Washington 

                                                 

 
Chinook Salmon 

In Puget Sound, Fresh (2006) suggests that juvenile Chinook salmon could be aggregated into 
four general life history strategies, referred to as migrant fry, delta fry migrants, parr migrants, 
and yearlings, based upon when the fish leave freshwater and their size at this time. Most 
Chinook salmon from Puget Sound tributaries are “ocean-type,” and arrive in estuaries as fry (< 
50 mm fork length), entering natal deltas between December and April (Simenstad et al. 1982; 
Duffy 2003; Brennan et al. 2004; Duffy et al. 2005; Duffy 2009; Beamer et al. 2010). Some of 
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these ocean-type juveniles pass quickly through the natal delta and enter Puget Sound (the 
migrant strategy), spending only days in natal deltas. Other fry remain in natal deltas for 
extended periods of up to 120 days (the delta strategy), where they make extensive use of small, 
dendritic tidal channels (channels that end in the upper end of the marsh) and sloughs in tidal 
wetlands (Fresh 2006). 
 
During the late spring, fish associated with two other life history strategies (parr and yearling 
migrants) leave freshwater and migrate downstream to the estuary. Most Chinook salmon parr 
and yearlings arrive in the delta from mid-April to mid-June (Anderson and Topping 2018). 
Residence time and migration timing from the natal delta into Puget Sound habitats are a 
function of a number of factors. In general, with the exception of the migrant fry strategy, larger 
fish at the time of estuary entry tend to spend less time within an estuary than smaller fish. 
Environmental conditions, especially increasing water temperatures, may also be an important 
determinant of when juvenile Chinook salmon leave delta habitats (Fresh 2006). 
 
Duffy et al. (Duffy et al. 2005) found that wild ocean-type Chinook salmon out-migrate to Puget 
Sound waters from March to July. The authors also found that hatchery Chinook salmon occupy 
nearshore Puget Sound waters soon after release and in pulses from May to June. Juvenile 
Chinook salmon abundance in shoreline areas of Puget Sound typically peaks in June and July, 
although some are still present in shoreline habitats through at least October. 
 
Evidence indicates that all Chinook salmon populations in the ESU may rear throughout the 
Salish Sea for varying periods of time (Duffy 2003; Fresh 2006). Juvenile Chinook salmon may 
rear in Puget Sound for one to seven weeks, but certain stocks may become resident in the Salish 
Sea and remain there until maturity (commonly called "blackmouth"; Simenstad et al. 1982). 
Recent studies indicate that, upon release, substantial fractions (approximately 30%) of most 
hatchery stocks of Chinook salmon adopt the blackmouth life history strategy (O'Neill and West 
2009; Chamberlin et al. 2011). 
 
Sockeye Salmon 

Sockeye salmon usually enter marine waters in the spring, from late April to early June as 
smolts, but there are some populations that enter salt water as fry (Thorpe 1994). For some 
populations, fish may reside in estuaries, where they feed on copepods, insects, amphipods, 
euphausids, and fish larvae (Burgner 1991). In general, most sockeye have moved out of the 
estuaries by late summer into the ocean (Burgner 1991; Thorpe 1994). 
 
Steelhead 

Evidence indicates that because steelhead attain a relatively large size in freshwater prior to 
smoltification (approximately 150–220 mm (Ward et al. 1989), migrants may move rapidly 
through estuaries (Quinn 2005) or use deeper water habitat offshore (Moore et al. 2010). 
(Beamish et al. 2003) reported that juvenile steelhead entering the Salish Sea generally migrate 
offshore into oceanic waters of the Gulf of Alaska, and are rarely found close to shore (Pearcy 
and Masuda 1982; Hartt and Dell 1986). In a telemetry study of steelhead migration behavior 
and survival in Hood Canal and Puget Sound, (Moore et al. 2010) reported that steelhead did not 
favor migration along shorelines. The authors suggested that Hood Canal provides rearing 
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habitat for steelhead and does not function simply as a migratory corridor, with residence times 
averaging around 15-17 days. 
 
Once juvenile steelhead enter coastal waters, they move quickly offshore to oceanic feeding 
grounds (Burgner et al. 1992; Daly et al. 2014). Puget Sound steelhead appear to migrate quickly 
through estuaries (Moore et al. 2010). In oceanic waters off Washington State, Daly et al. (2014) 
determined that juvenile steelhead moved quickly offshore from near-coastal habitats and were 
associated with shelf waters for only a short period after their migration from freshwater. 
 
Coho Salmon 

Coho salmon do not reside for long in estuaries and generally enter ocean waters in the spring 
(late April through early June) (Thorpe 1994). Simenstad et al. (1982) found that a small 
proportion (3-5%) of juvenile coho salmon may remain in the estuaries of Puget Sound and feed 
on decapod larvae, amphipods, euphausids, and fish larvae, but the overall majority move 
through the estuary to the ocean. 
 
2.5.2.3.2.2. Competition 

The early estuarine and nearshore marine life stage, when natural-origin fish have recently 
entered the estuary and populations are concentrated in a relatively small area, is a critical life 
history period. Mortality was found to be greater during the first few weeks of steelhead marine 
residence, but decreased substantially after the migrating steelhead enter the Pacific Ocean 
(Moore et al. 2010; Goetz et al. 2015; Moore et al. 2015). Some researchers have hypothesized 
that there may be short-term instances where food is in short supply, and growth and survival 
declines as a result (Rensel et al. 1984; Duffy 2003; Pearcy and McKinnell 2007). As juvenile 
salmon released from the proposed programs arrive in Puget Sound estuaries, they may compete 
with other salmon and steelhead in areas where they co-occur, if shared resources are limiting. 
Studies suggest that marine survival rates for salmon can be density dependent, and thus possibly 
a reflection of the amount of food available (Rensel et al. 1984; Brodeur 1991; Holt et al. 2008). 
Fresh (1997) summarized information concerning competition in marine habitats and concluded 
that food is the most limiting resource in marine habitats. The degree to which food is limiting 
depends upon the density of prey species and food production. 
 
All of the hatchery-origin Chinook salmon released from hatcheries being evaluated in this 
Opinion are subyearlings released from April to  June. These fish will most likely reach marine 
waters within weeks, and potentially interact with natural-origin fish that will be rearing in 
estuarine waters at the same time. Davis et al. (2018) examined size-class and origin-level 
differences throughout a gradient of delta habitat types. Wild (unmarked) and hatchery juveniles 
exhibited distinct habitat use patterns whereby unmarked fish were captured more frequently in 
tidally influenced freshwater and mesohaline emergent marsh areas, while hatchery fish were 
caught more often in the nearshore intertidal zone. 
 
Consequently, hatchery fish were less likely to consume the energy-dense terrestrial insects that 
were more common in freshwater and brackish marshes (Davis et al. 2018). The authors 
measured stable isotope signatures from muscle and liver tissues, the results corroborated this 
finding, supporting that unmarked juveniles had derived 24–31% of their diets from terrestrially 
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sourced prey, while terrestrial insects only made up 2–8% of hatchery fish diets. This may 
explain why unmarked fish were in better condition than hatchery fish (also see Daly et al. 2012; 
Daly et al. 2014) and had stomach contents that were 15% more energy-rich than those of 
hatchery fish. Davis et al. (2018) did not observe strong evidence for trophic overlap in juvenile 
Chinook salmon of different rearing origins, but their results suggest that hatchery-origin 
juveniles could be more sensitive to diet-mediated effects on growth and survival. 
 
Interactions and effects likely diminish as hatchery- and natural-origin fish disperse into the main 
body of the Salish Sea and into the Pacific Ocean. Assessment of the effects of hatchery fish on 
natural-origin steelhead and Chinook salmon in the Salish Sea is problematic because there is a 
lack of basic information about what shoreline habitats are preferred by steelhead and Chinook 
salmon, their duration of habitat use, and their importance (Fresh 2006; Moore et al. 2010). 
Researchers have looked for evidence that marine area carrying capacity can limit salmonid 
survival (Beamish et al. 1997; HSRG 2004a). Some evidence suggests density-dependence in the 
abundance of returning adult salmonids (Emlen et al. 1990; Lichatowich et al. 1993; Bradford 
1995), and/or is associated with cyclic ocean productivity (Nickelson et al. 1986; Beamish and 
Bouillon 1993; Beamish et al. 1997). (Naish et al. 2008b) could find no systematic, controlled 
study of the effects of density on natural-origin salmon, or of interactions between natural- and 
hatchery-origin salmon, nor on the duration of estuarine residence and survival of salmon. The 
Salish Sea marine ecosystem was until recently believed to be stable, internally regulated and 
largely deterministic. The current view is that Puget Sound is dynamic, with much environmental 
stochasticity and ecological uncertainty (Mahnken et al. 1998; Francis 2002a). 
 
From the scientific literature reviewed above, the influence of density-dependent interactions on 
growth and survival is likely small compared with the effects of large scale and regional 
environmental conditions. While there is evidence that hatchery production of pink and chum 
salmon in Alaska, Japan, and Russia, can affect natural-origin salmon survival and productivity 
in the Northeast Pacific Ocean (Ruggerone et al. 2010), the degree of impact is not yet 
understood or predictable. Large-scale hatchery production may exacerbate density dependent 
effects when ocean productivity is low. Puget Sound-origin salmonid survival may be 
intermittently limited by competition with almost entirely natural-origin odd-year pink salmon 
originating from Salish Sea watersheds (Ruggerone and Goetz 2004), particularly when ocean 
productivity is low (Nickelson et al. 1986; Beamish and Bouillon 1993; Beamish et al. 1997; 
Mahnken et al. 1998). However, in studies of post-release migration and survival for natural and 
hatchery-origin steelhead smolts in Hood Canal and Central Puget Sound, predation by birds, 
marine mammals, and perhaps, other fish appears to be the primary factor limiting abundance of 
smolts reaching ocean rearing areas, not competition (Moore et al. 2010). 
 
Green River hatchery-origin smolts migrating in marine waters exhibited an early offshore 
movement and a strong northward and westward seaward-bound orientation. Moore et al. (2015) 
found that natural-origin steelhead emigrating in early-April and late-May had a higher 
probability of survival than those migrating in early-and mid-May. The authors hypothesized that 
lower survival in the first half of May was related to consistent hatchery releases of coho and 
steelhead during the first week of May. However, their findings conflict with results from the 
Skagit River, which indicate that hatchery-origin fish had higher freshwater and early-marine 
survival rates than natural-origin steelhead, making it difficult to speculate how hatchery-
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releases, which survived at a higher rate, could reduce the survival rate of natural-origin fish. 
Thus, competition from hatchery-origin steelhead in Puget Sound appears to be short in duration 
because steelhead are actively migrating offshore and seaward into areas where the fish may 
disperse more widely and where food resources are more plentiful. 
 
Competition for food resources in Puget Sound marine areas between hatchery-origin Chinook 
salmon and steelhead is not likely a substantial risk factor. Spatial and temporal differences in 
emigration behaviors and residence time in Puget Sound between Chinook salmon,and steelhead, 
(Rensel et al. 1984; Duffy 2003; Fresh 2006), size differences at release, and partitioning of 
available food resources in marine areas (Duffy 2003) limit the risk of any substantial 
competition effects. The cumulative effects of Puget Sound hatchery Chinook programs on listed 
Chinook in the marine environment should be addressed through an ESU-wide scale research 
initiative collaboratively conducted by the Co-managers and NMFS in future years. 
 
2.5.2.3.2.3. Residualism 

A proportion of the smolts released from a hatchery may not migrate to the ocean but rather 
reside for a period of time in the vicinity of the release point. These non-migratory smolts 
(residuals) may directly compete for food and space with natural-origin juvenile salmonids of 
similar age. Although this behavior has been studied and observed, most frequently in the case of 
hatchery steelhead, residualism has been reported as a potential issue for hatchery coho and 
Chinook salmon as well. Adverse impacts of residual hatchery Chinook and coho salmon on 
natural-origin salmonids can occur, especially given that the number of smolts per release is 
generally higher; however, the issue of residualism for these species has not been as widely 
investigated compared to steelhead.  Implementation of co-manager protocols for tracking the smolt 
transition among the yearling release groups as described in the proposed action, would minimize the 
risk of residualism occurring by coho yearlings. 
 
The risk of adverse competitive interactions between hatchery- and natural-origin fish can be 
minimized by:  

• Releasing hatchery smolts that are physiologically ready to migrate. Hatchery fish 
released as smolts emigrate seaward soon after liberation, minimizing the potential for 
competition with juvenile naturally produced fish in freshwater (Steward and Bjornn 
1990; California HSRG 2012) 

• Operating hatcheries such that hatchery fish are reared to a size sufficient to ensure that 
smoltification occurs in nearly the entire population  

• Releasing hatchery smolts in lower river areas, below areas used for stream-rearing by 
naturally produced juveniles  

• Monitoring the incidence of non-migratory smolts (residuals) after release and adjusting 
rearing strategies, release location, and release timing if substantial competition with 
naturally rearing juveniles is determined likely  

 
2.5.2.3.2.4. Predation 

Newly released hatchery-origin yearling salmon may prey on juvenile salmon and steelhead in 
the freshwater and marine environments (Hargreaves and LeBrasseur 1986; Hawkins and 
Tipping 1999; Pearsons and Fritts 1999). Chinook salmon, after entering the marine 
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environment, generally prey upon fish one-half their length or less and consume, on average, fish 
prey that is less than one-fifth of their length (Brodeur 1991). During early marine life, predation 
on Chinook salmon will likely be highest in situations where large, yearling-sized hatchery fish 
encounter fry (Rensel et al. 1984). For example, (Beauchamp and Duffy 2011) estimated that 
older Chinook salmon (>300 mm FL; blackmouth) during June-August could potentially 
consume 6 to 59% of age-0 juvenile Chinook salmon recruiting into marine waters in the Puget 
Sound. The estimate depends on whether a very conservative estimate (6% Chinook in diet) or 
reasoned assumptions (20% Chinook in diet in May and June then allowed to decline daily via 
linear interpolation) were used. 
 
Conversely, for the non-blackmouth life histories, results from Seiler et al. (2004a) suggest that 
the individual sizes of Chinook salmon successfully transitioning to the marine environment are 
too large for predation by co-occurring hatchery-origin fish. Likely reasons for apparent low 
predation rates on Chinook salmon juveniles by larger Chinook salmon are described by 
Cardwell and Fresh (1979): (1) due to rapid growth, natural Chinook salmon are not as 
accessible and are better able to elude predators; (2) because Chinook salmon have dispersed, 
they are present in low densities relative to other fish; and (3) there has either been learning or 
selection for some predator avoidance. 
 
2.5.2.3.2.5.  Summary 

Based on the information available at this time, it is apparent that some overlap in time and space 
occurs between species and between hatchery- and natural-origin fish of the same species in the 
estuaries of Puget Sound. Effects may be more pronounced in nearshore marine waters adjacent 
to river mouths where salmon may initially be concentrated. Interactions and effects likely 
diminish as the fish disperse into the main body of Puget Sound and into the Pacific Ocean 
because overlap in resource use, and direct contact become less likely. However, whether this 
leads to either inter-or intra-specific competition and predation is less certain. In years of poor 
food productivity, releases of millions of hatchery fish may negatively affect natural-origin 
juveniles in the marine environment. However, because of the variable nature of food 
productivity, it is difficult to quantitatively account for interactions of hatchery fish on natural-
origin fish in the estuary and marine environments, but a qualitative account of potential 
interactions can be made based on the knowledge we do have. This exercise suggests that the 
highest number of consistent potential interactions occur between natural- and hatchery-origin 
fish of the same species (Table 26). 
 

Table 26. Likelihood and rationale for competitive interactions between juvenile salmon 
and steelhead species. 

Natural 
Species 

Proposed Action Hatchery Species 
Sockeye Subyearling 

Chinook 
Coho 

Yearling 
Chinook 

High: same 
habitat, timing 
and body size 

Low: different 
habitat and 

timing 

Low: different 
habitat, timing, 

body size 
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Subyearling 
Chinook 

Low: different 
habitat and 

timing 

High: same 
habitat, timing 
and body size 

Medium: 
different habitat 
and body size, 
same timing 

Sockeye High: same 
habitat, timing 

 

Low: different 
habitat 

Low: different 
habitat 

Steelhead Medium: 
different habitat and 

body size, 
same timing 

Low: different 
timing and body 

size 

Low: different 
timing and body 

size 

 
Based on a review of the scientific literature, NMFS’s conclusion is that the influence of density-
dependent interactions on the growth and survival of salmon and steelhead is likely small 
compared with the effects of large-scale and regional environmental conditions and, while there 
is evidence that large-scale hatchery production can affect salmon survival at sea, the degree of 
effect or level of influence is not yet well understood or predictable.  hatchery enhancement of 
salmon populations could exacerbate density-dependent effects during years of low ocean 
productivity. 
 
2.5.2.3.3. Naturally-produced progeny competition  

Naturally spawning hatchery-origin salmon are likely to be less efficient at reproduction than 
their natural-origin counterparts (Christie et al. 2014a), but the progeny of such hatchery-origin 
spawners are likely to make up a sizable portion of the juvenile fish population for those areas 
where hatchery-origin fish are allowed to spawn naturally. This is actually a desired result of the 
integrated recovery programs. Therefore, the only expected effect of this added production is a 
density-dependent response of decreasing growth and increased competition/predation when 
habitat capacity is being approached. However, ecological impacts on listed Chinook salmon 
may increase in the future if the Chinook salmon populations grow. 
 
Because fall Chinook and coho salmon historically coexisted in substantial numbers with 
steelhead, it follows that there must have been adequate passage and habitat to allow all species 
to be productive and abundant. It does not follow automatically, however, that the historical 
situation can be restored under present-day conditions. Habitat and passage conditions have 
changed considerably over time. Should the situation arise where salmon production is limiting 
natural production of listed salmon species, recovery planners would have to prioritize species. 
NMFS expects that the implementation of co-manager protocols for tracking the smolt transition 
among the yearling release groups prior to release would detect negative impacts before they reach 
problematic levels. 
 
2.5.2.3.4. Disease  

Adults returning back to hatchery facilities can have pathogens they become infected with upon 
their return to freshwater or that may have contracted during their juvenile rearing and 
outmigration. For programs in the Lake Washington watershed, the same pathogens detected in 
the juveniles were detected in the returning adults, Flavobacterium psychrophilum, F. 
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columnare, F. branchiophilum, Aeromonas salmonicida, Ichthyopthirius multifiliis, Ichthyobodo 
spp., Gyrodactylus spp., Trichodina spp. were all detected for returning adults collected for 
broodstock. These pathogens are all native to the Lake Washington watershed and did not result 
in any disease outbreaks in adults over the past year. Adults are also routinely screened for viral 
pathogens, such as infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic 
necrosis virus (IPNV), but none were detected over the last three years. Based on the endemic 
state of the pathogens and the lack of outbreaks, risk of disease transmission and amplification 
from returning adults is low. 
 
The risks of pathogen transmission and subsequent disease outbreaks in natural-origin salmon, 
and amplification of pathogens in the environment are low for the programs included in this 
proposed action. The reasons for this conclusion are three fold; outbreak frequency is low, the 
pathogens listed in Table 27 are treatable, and all of the pathogens detected are endemic to the 
area. 
 
Fish health management protocols defined in the Co-manager’s Fish Health Policy are designed 
so that compliance with these protocols minimizes the likelihood for fish disease amplification 
and loss within the listed, propagated population, or transmission to listed natural-origin Chinook 
salmon. This requires on-going monitoring prior to release, and treatment as prescribed to 
minimize disease outbreaks prior to release. Culling of diseased fish is also considered when 
necessary to protect listed populations within the release basin.  Furthermore, prudent use of 
pathogen treatments limits the ability of the pathogens to develop resistance (i.e., bacteria to 
antibiotics), which could lead to no suitable treatment in the future and increased risk of 
pathogen amplification. Pathogen treatments are administered when the pathogen load is high 
enough to become a stressor to the fish host. Typical formalin treatments can range from 1 to 3 
days, and last up to 2 hours per day. These are administered as a drip into the rearing unit. The 
bacterial pathogens are treated with an antibiotic that is premixed into the daily feed ration of 
feed for 5 to 14 days. Thus, the amount of time available over which shedding of pathogens 
could occur is limited. 
 
There can be a few endemic pathogens detected within juvenile fish for which there is no known 
treatment or for which treatments with therapeutants may not be completely effective. However, 
fish health protocols are designed to prevent and control outbreaks with these pathogens. For 
example, to prevent outbreaks and reduce the amplification of Renibacterium salmoninarum in 
natural environments, hatchery staff may cull fish with high levels of the bacteria (WWTIT and 
WDFW 2006). These control measures have proven effective in controlling pathogens as indicated 
by the low number of outbreaks. 
 

Table 27. Occurrence of the detection of pathogens and treatment  for each hatchery 
program in Lake Washington. 

Program Pathogen Season1 Treatment 

Issaquah Coho Ichthyobodo March-Dec 2018, 2019 Formalin 
Aeromonas salmonicida May-Aug 2017, 2018 2019 Medicated feed 
Flavobacterium columnare Aug-Sept 2019 Medicated feed 



 

80 
 

Trichodina May 2017 None 
Issaquah Fall 

Chinook 
Ichthyobodo Jan-May 2017,2018, 2019 Formalin 
Gyrodactylus Feb-March 2018 Formalin 
Ichthyophthirius multifilis Jan-March 2017, 2018, 2019 Formalin + salt 
F. branchiophila March 2019 Formalin + salt 
F. psychrophilus April 2019 None 
A. salmonicida May 2017 2019 None 

Cedar River sockeye Aeromonas salmonicida Sept-Nov 2019 2020 (adults) salt 
 Bacterium salmonicida Sept-Nov 2019 2020 (adults) salt 
 Chondrococcus columnaris Sept-Nov 2019 2020 (adults) salt 

1 The season is when the pathogen is present at the facility, and although they may be present that does not mean 
that a treatment was administered. 

                                                 

 
2.5.2.4. Factor 4. Research, monitoring, and evaluation 

The programs include RM&E to monitor compliance with this opinion and to reduce risks to 
ESA-listed Sammamish and Cedar River Chinook salmon and steelhead.  While some lethal and 
sub-lethal effects on listed species are expected to occur as a result of implementing RM&E 
actions, the knowledge gained through these actions allow for better conservation and 
management of these stocks, which has an overall benefit to the Lake Washington basin Chinook 
salmon population. General monitoring and evaluation measures are included in the HGMP; 
RM&E actions include, but are not limited to: 

• Observation during surveying 
• Collecting and handling (purposeful or inadvertent) 
• Holding the fish in captivity, sampling (e.g., the removal of scales and tissues) 
• Tagging and fin-clipping 

 
Observing/Harassing 

Direct observation is the least disruptive method for determining a species’ presence/absence and 
estimating their relative numbers. Its effects are also generally the shortest-lived and least 
harmful of the research activities discussed in this section because a cautious observer can 
effectively obtain data while only slightly disrupting fishes’ behavior. Fry and juveniles 
frightened by the turbulence and sound created by observers are likely to seek temporary refuge 
in deeper water, or behind/under rocks or vegetation. In extreme cases, some individuals may 
leave a particular pool or habitat type and then return when observers leave the area. At times, 
the research involves observing adult fish, which are more sensitive to disturbance. These 
avoidance behaviors are expected to be in the range of normal predator and disturbance 
behaviors therefore we do not anticipate actions to result in a decrease in the likelihood of survival 
and recovery of the listed species. 
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Capturing/handling 

Any physical handling or psychological disturbance is known to be stressful to fish. Decreased 
survival can result from high stress levels because stress can be immediately debilitating, and 
may also increase the potential for vulnerability to subsequent challenges (Sharpe et al. 1998). 
Primary contributing factors to stress and death from handling are excessive doses of anesthetic, 
differences in water temperatures (between the river and holding vessel), dissolved oxygen 
conditions, the amount of time fish are held out of the water, and physical trauma. Stress 
increases rapidly if the water temperature exceeds 18ºC or dissolved oxygen is below saturation. 
Fish transferred to holding tanks can experience trauma if care is not taken in the transfer 
process, and fish can experience stress and injury from overcrowding. 
 
The handling expected to occur as part of RM&E programs is the same handling discussed in the 
analysis of Factor 1, above. 
 
Fin clipping and tagging 

Many studies have examined the effects of fin clips on fish growth, survival, and behavior. The 
results of these studies are somewhat varied, but fin clips do not generally alter fish growth 
(Brynildson and Brynildson 1967; Gjerde and Refstie 1988). Mortality among fin-clipped fish is 
variable, but can be as high as 80% (Nicola and Cordone 1973). In some cases, though, no 
significant difference in mortality was found between clipped and un-clipped fish (Gjerde and 
Refstie 1988; Vincent-Lang 1993). The mortality rate typically depends on which fin is clipped. 
Recovery rates are generally higher for adipose- and pelvic-fin-clipped fish than for those that 
have clipped pectoral, dorsal, or anal fins (Nicola and Cordone 1973), probably because the 
adipose and pelvic fins are not as important as other fins for movement or balance (McNeil and 
Crossman 1979). 
 
In addition to fin clipping, CWTs may be used according to the details in table Table 4. Coded-
wire tags are made of magnetized, stainless-steel wire and are injected into the nasal cartilage of 
a salmon and thus cause little direct tissue damage (Bergman et al. 1968; Bordner et al. 1990). A 
major advantage to using CWTs is that they have a negligible effect on the biological condition 
or response of tagged salmon (Vander Haegen et al. 2005); however, if the tag is placed too 
deeply in the snout of a fish, it may kill the fish, reduce its growth, or damage olfactory tissue 
(Fletcher et al. 1987; Peltz and Miller 1990). This latter effect can create problems for species 
like salmon because they use olfactory clues to guide their spawning migrations (Morrison and 
Zajac 1987).  
 
Mortality from tagging is both acute (occurring during or soon after tagging) and delayed 
(occurring long after the fish have been released into the environment). Acute mortality is caused 
by trauma induced during capture, tagging, and release—it can be reduced by handling fish as 
gently as possible. Delayed mortality occurs if the tag or the tagging procedure harms the animal. 
Tags may cause wounds that do not heal properly, may make swimming more difficult, or may 
make tagged animals more vulnerable to predation (Howe and Hoyt 1982; Matthews and Reavis 
1990; Moring 1990). Tagging may also reduce fish growth by increasing the energetic costs of 
swimming and maintaining balance. 
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For some parts of the proposed studies, listed fish would be observed in-water (e.g., by snorkel 
surveys, wading surveys, or observation from the banks). However, any avoidance behaviors are 
expected to be in the range of normal predator and disturbance behaviors. Redds may be visually 
inspected, but would not be walked on. 
 
The effects of take associated with these activities were analyzed and determined not to result in a 
decrease in the likelihood of survival and recovery of the listed species, and will have no measurable 
effects on the listed salmonids’ habitat. 

2.5.2.5. Factor 5. Operation and maintenance of hatchery facilities 

Effects on listed fish from operation and maintenance activities associated with the proposed 
hatchery programs are negative. The proposed action will require the construction of new 
facilities; however, the scope of this BiOp does not include any future facility construction or 
expansion, or any increases in quantities of water withdrawals beyond existing permissible 
volumes. Construction of a permanent Weir on Cedar River is expected to commence in the 
future, when construction and installation plans are in consultation with NMFS or other 
necessary agencies. 
 
Screening and Passage 

The facilities at Issaquah, Willow Creek, and Cedar River hatcheries are not anticipated to have 
any adverse effects on ESA-listed salmon because they are compliant with NMFS screening 
criteria (Table 7). 
 
The facilities at UW ARF water intake are an infiltration gallery. NMFS engineering staff have 
investigated the water intake for the facility and have determined that the water intake is an 
infiltration gallery, and as an existing infiltration gallery of sufficient depth below the bed 
elevation of the water body to mitigate entrainment concerns. The infiltration gallery is not 
anticipated to have any adverse effects on ESA-listed salmon because it meets NMFS screening 
criteria as applicable. 
 
Water Withdrawals 

Facilities that withdraw a relatively large proportion of water over a relatively large diversion 
distance may present risks to the migration and survival of listed salmon.  
However, NMFS believes the facilities analyzed in this Proposed Action are not a risk for several 
reasons: (1) diversion distance is very small < 0.002 km and therefore minimizes the risk of 
affecting individual fish; (2) water use is non-consumptive; (3) the proportion of water 
withdrawn is relatively low; and (4) no changes to surface water use have been proposed. These 
impacts will not measurably change freshwater rearing, freshwater spawning, or migration 
corridors. 
 
Withdrawal of surface water at maximum permitted levels for fish rearing would reduce the 
quantity of water available for salmon and steelhead migration and rearing between the hatchery 
water intake and water discharge points (Table 28). Therefore NMFS expects that the water 
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withdrawals would not lead to any dewatering of spawning habitat or the migration corridor, nor 
will it cause the interruption or prevention of fish movement. 
 
The net pen in the Port of Edmonds, in central Puget Sound, uses passively supplied marine 
water, which is not diverted and is non-consumptive, and thus has no effect on salmon (Table 
28). 
 
Hatchery maintenance activities may displace juvenile fish through noise and instream activity or 
expose them to brief pulses of sediment as activities occur instream. The Proposed Action 
includes best management practices that limit the type, timing, and magnitude of allowable 
instream activities. In general, the measures would limit effects to short-term sub-lethal effects 
that would not result in death or substantial reductions in fitness. 
 
No major construction is included as part of the Proposed Action. 
 
Operation and maintenance of the facilities associated with the hatchery programs included in 
the Proposed Action would have a negligible effect on ESA-listed Chinook salmon and steelhead 
or their designated critical habitat. 
 
 

Table 28. Water source, use, and discharge by salmon hatchery facilities. 

 

Facility Surface/Spring 
Water (cfs) 

Ground 
Water 
(gpm) 

Water 
Diversion 

Distance (km) 

Water Source Discharge 
Location 

 NA 49 NA Darigold/west 
farms foods  

Issaquah 
Creek 

 16 NA 0.002   
Issaquah 10 NA 1.19 Issaquah Creek Issaquah 

Creek 
 10 NA 0.009    
Willow Creek 
Hatchery 

1 NA 0.005 Willow Creek 
(Deer Creek) 

Willow 
Creek 

Edmonds Net 
Pens1 

NA NA NA Puget Sound NA 

 5.0 NA NA Lake Union 
(Portage Bay) 

 

UW ARF NA 80 NA Groundwater Lake Union 
 NA 50 NA Groundwater  
Cedar River 
Sockeye 

NA 1.7 0.54 unnamed 
spring 

 

4.46 NA 0.21 Cedar River  
1.3 NA 0.26 unnamed 

stream  
 

2.0 NA 0.09 unnamed 
stream 

Cedar River 

NA 2,000 NA Groundwater  
0.9 NA 0.44 unnamed 

stream 
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Effluent 

The direct discharge of hatchery facility and marine net-pen effluent is regulated by the 
Environmental Protection Agency under the Clean Water Act through National Pollutant 
Discharge Elimination System (NPDES) permits. For discharges from hatcheries not located on 
Federal or tribal lands within Washington, the Environmental Protection Agency has delegated 
its regulatory oversight to the State. Washington Department of Ecology is responsible for 
issuing and enforcing NPDES permits that ensure water quality standards for surface and marine 
waters remain consistent with public health and enjoyment, and the propagation and protection 
of fish, shellfish, and wildlife (WAC 173-201A). 
 
All hatchery facilities used by the hatchery programs are operated in compliance with NPDES 
permits issued by Washington Department of Ecology, or do not require a NPDES permit. 
NPDES permits are not needed for hatchery and net-pen facilities that release less than 20,000 
pounds of fish per year or feed fish less than 5,000 pounds of fish feed per year. Additionally, 
Native American tribes may adopt their own water quality standards for permits on tribal lands 
(i.e., tribal wastewater plans). The following water quality parameters, selected by EPA and 
WDOE as important for determining hatchery-related water quality effects, are monitored: 
 

• Total Suspended Solids - 1 to 2 times per month on composite effluent, maximum 
effluent and influent samples. 

• Settleable Solids - 1 to 2 times per week through effluent and influent sampling. 
• In-hatchery Water Temperature - daily maximum and minimum readings. 

 
Because the same water used for rearing (where survival is high compared to the natural 
environment) is then discharged into the surrounding habitat and then further diluted once it is 
combined with the river water, we believe effluent will have a minimal impact on ESA-listed 
salmonids in the area. 
 
Therapeutic chemicals used to control or eliminate pathogens (i.e., formaldehyde, sodium 
chloride, iodine, potassium permanganate, hydrogen peroxide, antibiotics), can also be present in 
hatchery effluent. However, these chemicals are not likely to be problematic for ESA-listed 
species because they are quickly diluted beyond manufacturer’s instructions when added to the 
total effluent and again after discharge into the recipient water body. Therapeutants are also used 
periodically, not constantly, during hatchery rearing (see Section 2.5.2.3.4). In addition, many of 
them break down quickly in the water and/or are not likely to bioaccumulate in the environment. 
For example, formaldehyde readily biodegrades within 30 to 40 hours in stagnant waters. 
Similarly, potassium permanganate would be reduced to compounds of low toxicity within 
minutes. Aquatic organisms are also capable of transforming formaldehyde through various 
metabolic pathways into non-toxic substances, preventing bioaccumulation in organisms (EPA 
2015). 
 
2.5.2.6. Factor 6. Fisheries 

There are no fisheries that exist as a direct result of the Proposed Action. The Chinook salmon under 
propagation are not essential for recovery of the Puget Sound Chinook ESU (PRA Tier 3)  The 
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effects of fisheries that may impact fish produced by these programs are described in Section 2.3.3. 
Therefore, the effects are considered in the Environmental Baseline. 
 
2.5.3. Effects of the Action on Critical Habitat 

Existing hatchery facilities have not led to: altered channel morphology and stability; reduced 
and degraded floodplain connectivity; excessive sediment input; or the loss of habitat diversity. 
No new facilities or construction are directly proposed as part of the proposed actions considered 
in this opinion. No hatchery facilities are located in Sammamish river waters where designated 
critical habitat for listed Chinook salmon would be affected. Critical habitat for listed Steelhead 
has not been designated in the Lake Washington watershed and therefore there would not be 
effects on designated critical habitat for this species. 
 
Most facilities that use surface water diversions return that water to a creek a short distance from 
the diversion point, and use only a small proportion of the total surface water volume (Table 28). 
Because the uses are non-consumptive, these withdrawals would not affect adult spawning and 
juvenile rearing critical habitat of ESA-listed Chinook or steelhead. Hatchery diversion screens 
protect listed juvenile Chinook salmon and steelhead from entrainment and injury, and meet 
current NMFS screen criteria, or are proposed for retrofitting to meet those criteria as needed 
(See Table 7; section 1.3.8). 
 
Another potential effect on critical habitat is the use of chemicals for cleaning or treating 
pathogens that are present in the hatchery effluent.  Compliance with NPDES permits issued for 
the programs would help ensure that water quality in downstream areas where listed fish may be 
present is not degraded. Consistent with effluent discharge permit requirements developed by the 
Environmental Protection Agency and the Washington Department of Ecology(WDoE) for 
upland fish hatcheries, water used for fish production at Issaquah and willow creek hatcheries 
would be adequately treated prior to discharge into downstream areas to ensure that federal and 
state water quality standards for receiving waters are met and that downstream aquatic life, 
including salmon and steelhead, will be no more than minimally affected. 
 
For these reasons, the proposed hatchery programs are not expected to pose substantial risks 
through water quality impairment to downstream aquatic life, including listed salmon and 
steelhead. No hatchery operation and maintenance activities are expected to adversely modify 
designated critical habitat or habitat proposed for critical designation. 
 
2.6. Cumulative Effects 

“Cumulative effects” are those effects of future state or private activities, not involving Federal 
activities, that are reasonably certain to occur within the action area of the Federal action subject 
to consultation (50 CFR 402.02). Future Federal actions that are unrelated to the Proposed 
Action are not considered in this section because they require separate consultation pursuant to 
section 7 of the ESA. For the purpose of this analysis, the action area is described in Section 0. 
Future Federal actions, including the ongoing operation of the hydropower system, hatcheries, 
fisheries, and land management activities will be reviewed through separate section 7 
consultation processes. 
 



 

86 
 

The federally approved Shared Strategy for Puget Sound Recovery Plan for Puget Sound 
Chinook Salmon (NMFS 2006b) describe, in detail, the on-going and proposed state, tribal, and 
local government actions that are targeted to reduce known threats to listed Puget Sound 
Chinook salmon in the Lake Washington Basin. Future tribal, state, and local government actions 
will likely be in the form of legislation, administrative rules, policy initiatives, and land use and 
other types of permits. Government and private actions may include changes in land and water 
uses, including ownership and intensity, which could affect listed species or their habitat. 
Government actions are subject to political, legislative, and fiscal uncertainties. 
 
Non-Federal actions are likely to continue affecting listed species. State, tribal, and local 
governments have developed plans and initiatives to benefit listed species (Council 2017) . The 
cumulative effects of non-Federal actions in the action area are difficult to analyze because of the 
political variation in the action area, and the uncertainties associated with funding and 
implementation of government and private actions. However, we expect the activities identified 
in the baseline to continue at similar magnitudes and intensities as in the recent past. 
 
On-going State, tribal, and local government salmon restoration and recovery actions 
implemented through plans such as the recovery plans (SSPS 2007; NMFS 2018c) would likely 
continue to help lessen the effects of non-Federal land and water use activities on the status of 
listed fish species. The temporal pace of such decreases would be similar to the pace observed in 
recent years. Habitat protection and restoration actions implemented thus far have focused on 
preservation of existing habitat and habitat-forming processes; protection of nearshore 
environments, including estuaries, marine shorelines, and Puget Sound; instream flow protection 
and enhancement; and reduction of forest practice and farming impacts on salmon habitat. 
Because the projects often involve multiple parties using Federal, state, and utility funds, it can 
be difficult to distinguish between projects with a Federal nexus and those that can be properly 
described as Cumulative Effects. 
 
With these improvements, however, based on the trends discussed above, there is also the 
potential for adverse cumulative effects associated with some non-Federal actions to increase 
such as urban development (Judge 2011). To help protect environmental resources from potential 
future development effects, Federal, state, and tribal laws, regulations, and policies are designed 
to conserve air, water, and land resources. A few examples include the Federal Navigable Waters 
regulations of the Clean Water Act, and in Washington State, various habitat conservation plans 
(HCPs) have been implemented, such as the Washington Department of Natural Resources 
(DNR) Forest Practices HCP (Washington Department of Natural Resources (DNR) 2005). 
  
In Washington, local land use laws, regulations, and policies will also help protect the natural 
environment from future development effects. For example, the Puget Sound Regional Council 
(PSRC) developed Vision 2040 to identify goals that support preservation and restoration of the 
natural environment ongoing with development through multicounty policies that address 
environmental stewardship (Puget Sound Regional Council 2009). Vision 2040 is a growth 
management, environmental, economic, and transportation strategy for central Puget Sound. 
These objectives also include preserving open space, focusing on sustainable development, and 
planning for a comprehensive green space strategy. Other local policies and initiatives by 
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counties and municipalities include designation of areas best suited for future development, such 
as local sensitive areas acts and shoreline protection acts. 
 
Some continuing non-Federal activities are reasonably certain to contribute to climate effects 
within the action area. However, it is difficult, if not impossible, to distinguish between the 
action area’s future environmental conditions caused by global climate change that are properly 
part of the environmental baseline versus cumulative effects. Therefore, all relevant future 
climate-related environmental conditions in the action area are described in the Environmental 
Baseline section (section 2.3) 
 
Climate Change 
Climate change may have some effects on critical habitat as discussed in Section 2.4.3. With 
continued losses in snowpack and increasing water temperatures, it is possible that increases in 
the density and residence time of fish using cold-water refugia could result in increases in 
ecological interactions between hatchery and natural-origin fish of all life stages, with unknown 
but likely small effects. However, the continued restoration of habitat, should alleviate some of 
this potential pressure for cold water refugia as well as suitable rearing and spawning habitat. It 
is also possible the changing flow patterns due to climate change may change the suitable 
operation periods of water intakes and weirs for the programs. In the short-term, these changes 
are expected to be small, and infrastructure is likely able to sustain continued operations as 
described without exacerbating changes. 
 
2.7. Integration and Synthesis 

The Integration and Synthesis section is the final step in our assessment of the risk posed to 
species and critical habitat as a result of implementing the proposed action. In this section, 
NMFS adds the effects of the proposed action (Section 2.5.2) to the environmental baseline 
(Section 2.4) and to cumulative effects (Section 2.6) to formulate the agency’s opinion as to 
whether the Proposed Action is likely to: (1) result in appreciable reductions in the likelihood of 
both survival and recovery of the species in the wild by reducing its numbers, reproduction, or 
distribution; or (2) appreciably diminish the value of designated or proposed critical habitat as a 
whole for the conservation of the species (Section 2.2). 
 
In assessing the overall risk of the proposed action on each species, NMFS considers the risks of 
each factor discussed in Section 2.5.2, above, in combination, considering their potential additive 
effects with each other and with other actions in the area (environmental baseline and cumulative 
effects). This combination serves to translate the threats posed by each factor of the proposed 
action into a determination as to whether the proposed action as a whole would appreciably 
reduce the likelihood of survival and recovery of the listed species. 
 
2.7.1. Puget Sound Chinook Salmon 

Best available information indicates that the Puget Sound Chinook Salmon ESU remains 
threatened (NWFSC 2015). Spawner abundance is currently depressed, and below the critical 
threshold for Sammamish Fall Chinook population, but above the rebuilding threshold for the 
Cedar River fall Chinook population (NMFS 2021).  The Sammamish River and Cedar River 
populations currently do not assume a primary role for recovery of the Puget Sound ESU 



 

88 
 

(2.2.1.1). Our environmental baseline considers the effects of dams, habitat condition, fisheries, 
and hatcheries on Puget Sound Chinook Salmon. Although all may have contributed to the 
listing, all factors have also seen improvements in the way they are managed/operated. As we 
continue to deal with a changing climate, management of these factors may also alleviate some 
of the potential adverse effects (e.g., hatcheries serving as a genetic reserve for natural 
populations). 
 
Effects of the proposed action include effects that occur immediately (handling, monitoring, 
construction, and operation of facilities), as well as those that will occur over time (genetic and 
ecological). NMFS will monitor whether decreased productivity, diversity, or abundance of 
natural-origin fish may necessitate more aggressive adult management, and/or reconsideration of 
hatchery program size in the future to limit impacts on these VSP parameters in these ESUs. 
 
Broodstock collection requires ongoing annual handling of a portion of the population (juvenile 
and adult), though handling mortality is low. The broodstock collection is an essential 
component of the action. The effects of broodstock collection on the Steelhead population would 
be infrequent and there is potential for years with no interactions, therefore it is unlikely to have 
an adverse effect at the ESU level. 
 
The ongoing effects of the Proposed Action on this ESU are genetic and ecological in nature, 
with small, localized effects from facility operation. Effects from RM&E have been covered 
previously (NMFS 2017c; 2018b), and the information gained from conducting the work is 
essential for understanding the effects of the hatchery programs on natural-origin Chinook 
salmon populations. 
 
Genetic effects on the Sammamish Fall Chinook salmon population are limited by the use of 
natural-origin broodstock while the natural origin population is below the critical threshold. Even 
though the population is a tier 3 in recovery scenario and a target PNI value has not been 
established for tier 3 populations, a PNI > 0.5 is indicative of the dominance of natural selective 
forces (Section 5.2.1.4.2.1). In years where natural-origin abundance triggers the program to 
transition into a genetically-linked program, the population could achieve a PNI of 0.4. Because 
the Sammamish River population is one of 22 populations in the ESU, most populations are 
above critical thresholds, and the Proposed Action substantially improves the Sammamish 
population’s PNI, the Proposed Action is unlikely to have an adverse effect at the ESU level. 
 
Ecological effects on natural-origin juvenile Chinook salmon associated with hatchery program 
releases are equivalent to an estimated 5% loss of Chinook salmon adult equivalents from the 
Sammamish population, and a 0.8% loss from the Cedar. Based on current information, this is 
likely to be a maximum loss because of the assumptions and simplicity inherent in the model, 
and, while it could result in a decrease in adult abundance, this decrease is at a level that is likely 
to have little effect on the ESU. The ESU is composed of 21 other populations in addition to the 
Sammamish River, and many of those populations are situated in Basins that have substantially 
better habitat than the Sammamish River (e.g., Nisqually). In addition, most Chinook salmon 
populations are above the critical threshold and are on their way to the rebuilding threshold. As 
we continue to improve the model, these estimates will become more refined in the future, and 
will likely indicate a smaller percentage of adults that are lost from this worst case scenario. 
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Added to the Species’ Status, Environmental Baseline, and effects of the Proposed Action are the 
effects of future state, private, or tribal activities, not involving Federal activities, within the 
Action Area. The recovery plan for this ESU describes the on-going and proposed state, tribal, 
and local government actions that are targeted to reduce known threats to ESA-listed Chinook 
salmon. Such actions include improving habitat conditions, and hatchery and harvest practices to 
protect natural-origin Chinook salmon, and NMFS expects this trend to continue, potentially 
leading to increases in abundance, productivity, spatial structure and diversity. 
 
2.7.2. Puget Sound Steelhead 

Any effects of the Proposed Action on Lake Washington Steelhead populations would occur 
incidental to collection of Fall Chinook salmon, Coho salmon or Sockeye for broodstock, and 
during RM&E activities. The effects of Fall Chinook and Coho broodstock collection on the 
Steelhead population would be infrequent and there is potential for years with no interactions. 
The effects of Sockeye broodstock collection would be limited because there is little overlap 
between the steelhead and Sockeye runs such that the overlap is only during a short window at 
the early part of the run. Because Steelhead are not a target species, they are released unharmed. 
Thus, there is very little incidental effect on Steelhead, and it is unlikely that the proposed action 
would lead to a decrease in the abundance, productivity, spatial structure, or diversity of the 
DPS. 
 
The Central and South Puget Sound MPG is one of three MPGs that comprise the Puget Sound DPS 
and of these, the Northern Cascades MPG, is a stronghold for diversity, abundance, and viability, 
with a relatively lower extinction risk than the other two major population group’s in the Puget 
Sound DPS. Although, abundance varies greatly among the populations in the Central and South 
Puget Sound MPG, the Green, White, Puyallup, and Nisqually populations comprise the majority of 
steelhead in the MPG.  Any potential decreases in abundance and productivity due to the effects of 
the Proposed Action are small when scaled up to the DPS level. Thus, this analysis leads to a 
determination that the effects of salmon hatchery programs in the proposed action will not 
appreciably reduce the viability of the DPS. The DPS is reliant on other MPGs, and the Central and 
South Puget Sound MPG is sustained by contributions from the larger watersheds rather than the 
contributions from Lake Washington. Therefore, viability of the DPS would not be impacted by 
effect from the proposed action.  
 
2.7.3. Critical Habitat 

Critical habitat for ESA-listed Puget Sound Chinook salmon and Puget Sound steelhead is 
described in Sections 2.2.1.4, and 2.2.1.6 of this opinion. In reviewing the proposed action and 
evaluating its effects, NMFS has determined that the proposed action will not degrade habitat 
designated as critical for listed fish. The existing hatchery facilities have not led to altered 
channel morphology and stability, reduced or degraded floodplain connectivity, excessive 
sediment input, or the loss of habitat diversity, and no new facilities or changes to existing 
facilities are proposed. The proposed actions include compliance with limits and strict criteria for 
withdrawing and discharging water used for fish rearing, and the actions will not result in any 
adverse modification of critical habitat. 
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Withdrawal of surface water at maximum permitted levels for fish rearing could decrease the 
quantity of water available for salmon and steelhead migration and rearing between hatchery 
water intake and water discharge points, potentially leading to adverse effects on designated 
critical habitat. However, such adverse effects on critical habitat are unlikely, because water 
withdrawal amounts for hatchery fish rearing during the summertime low flow periods, when 
any effects would be most pronounced, will be much less than the permitted maximum levels. 
Fish biomass at the hatchery rearing locations, and required water withdrawal amounts, would 
reach maximum permitted levels only in the late winter and spring months just prior to fish 
release dates, when the fish are at their largest size, and flows in the Green River Basin approach 
their annual maximums. At these times, the water withdrawals would not be a substantial 
proportion of the streamflow, and so critical habitat would not be adversely modified. 
 
Steelhead and Chinook salmon populations in the Lake Washington watershed may be adversely 
affected by climate change (see section 2.4). Predictions of rapid changes over a geological scale 
in climate conditions in the PNW would be expected to reduce spring and summer flows, impairing 
water quantity and water quality in primary fish rearing habitat located in Cedar River. Predicted 
increases in rain events would increase the frequency and intensity of floods in mainstem river areas, 
leading to scouring flows that would threaten the survival and productivity of natural- and hatchery-
origin ESA-listed fish species. The proposed Chinook salmon hatchery programs are expected to 
help attenuate climate change impacts over the short term by providing a refuge for the listed 
populations from risks affecting critical life stages for naturally produced fish through circumvention 
of potentially adverse natural spawning, incubation, and rearing conditions. 
 
After reviewing the Proposed Action and conducting the effects analysis, and considering future 
anticipated effects of climate change, NMFS has determined that the Proposed Action would not 
diminish the conservation value of this critical habitat for the Snake River Basin steelhead DPS, 
or the Snake River Fall and Spring/Summer Chinook Salmon and Sockeye Salmon ESUs. 
 
2.8. Conclusion 

After reviewing the current status of the listed species, the environmental baseline within the 
action area, the effects of the proposed actions, including effects of the Proposed Actions that are 
likely to persist following expiration of the proposed actions, and cumulative effects, it is NMFS’ 
biological opinion that the proposed actions are not likely to jeopardize the continued existence 
of the Puget Sound Chinook Salmon ESU and the Puget Sound Steelhead DPS or to destroy or 
adversely modify designated critical habitat. 
 
2.9. Incidental Take Statement 

Section 9 of the ESA and Federal regulation pursuant to section 4(d) of the ESA prohibit the take 
of endangered and threatened species, respectively, without a special exemption. Take is defined 
as to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture or collect, or to attempt to 
engage in any such conduct. Harm is further defined by regulation to include significant habitat 
modification or degradation that results in death or injury to listed species by significantly 
impairing essential behavioral patterns, including breeding, feeding, or sheltering. Incidental take 
is defined as take that is incidental to, and not the purpose of, the carrying out of an otherwise 
lawful activity. For purposes of this consultation, we interpret “harass” to mean an intentional or 
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negligent action that has the potential to injure an animal or disrupt its normal behaviors to a 
point where such behaviors are abandoned or significantly altered. Section 7(b)(4) and section 
7(o)(2) provide that taking that is incidental to an otherwise lawful agency action is not 
prohibited under the ESA, if that action is performed in compliance with the terms and 
conditions of this Incidental Take Statement (ITS). 
 
2.9.1. Amount or Extent of Take 

The primary form of take of ESA-listed Chinook salmon and steelhead proposed in this action is 
direct take, authorized under the 4(d) rule. However, NMFS also expects incidental take of ESA-
listed salmon and steelhead will occur as a result of the proposed action for the following factors. 
The take pathways discussed below are: 

• Genetic and ecological effects of hatchery adults on the spawning grounds 
• Handling/tagging of adults at adult collection facilities 
• Ecological effects of juveniles during emigration 
• Ecological and genetic effects of juveniles that do not migrate 

Factor 1: Hatchery program does or does not remove natural fish for broodstock 

NMFS expects that while the Fall Chinook program is operating as a segregated program, the 
total annual number of natural-origin Fall Chinook salmon captured handled, and released during 
annual Chinook broodstock collection activities will not exceed the values listed in Table 21 
columns titled Proposed Handling.  Natural origin Fall Chinook encountered at the Issaquah 
weir, that are not retained for broodstock, will be released unharmed back into the river upstream 
of Issaquah weir where they would have access to suitable spawning habitat, with an incidental 
mortality of up to 30%, although not expected to exceed a three year average of more than 20%. 
 
Factor 2: Hatchery fish and the progeny of naturally spawning hatchery fish on spawning 
grounds and encounters with natural-origin and hatchery fish at adult collection facilities 

There is take for this factor due to three forms of harm: genetic effects, ecological effects, and 
adult handling/tagging and incidental mortality at adult collection facilities. 
 
For genetic effects, take occurs through a reduction in genetic diversity, outbreeding depression, 
and hatchery-influenced selection, which results from hatchery Chinook salmon spawning with 
natural-origin fish. Additionally, take occurs through ecological effects of intraspecific hatchery 
adults on the spawning grounds such as competition for spawning sites and redd 
superimposition. Take due to these two pathways cannot be directly measured because it is not 
possible to observe gene flow or interbreeding between hatchery and wild fish in a reliable way, 
or to quantify spawning site competition or redd superimposition. Thus, to ascertain the extent of 
take, NMFS will rely on a gene flow surrogate that can be measured through the annual 
evaluation of the proportion of marked and tagged hatchery fish and unmarked and untagged 
natural-origin fish that are collected in-river for broodstock and spawned, and through the 
estimation of the composition spawners reported as pHOS or PNI values (depending on 
program) on an annual basis as follows: 
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• While the Fall Chinook program is segregated the five year average pHOS shall not 

exceed 87%  
• While the Fall Chinook program is operating as a genetically-linked program PNI would 

initially begin at or below 0.06 and would be expected to range between 0.22 – 0.61. If 
annually reported data indicates that the pHOS continues to increase, in conjunction with a 
decrease in natural-origin returns such that the PNI would drop below 0.06 over a measured 
five-year rolling average for more than two consecutive brood cycles, ten years, NMFS will 
need to reevaluate the levels of potential reduction in genetic diversity of the programs to 
listed populations. 

• In Cedar River we expect a pHOS that corresponds with the ranges depicted in (Table 
17) but the five year running average for pHOS should not exceed 46%. Natural 
population fluctuations are expected, as reflected in the composition of hatchery and natural 
spawners on the spawning grounds annually. Thus, the five-year rolling average is expected 
to adequately describe the overall effect without being unduly complicated by year-to-year 
variation. However, if pHOS after one or two years is so high that attainment of expected 
pHOS value across five years is not a reasonable expectation, or if data indicates that the 
assumptions of the model are incorrect, co-managers and NMFS will look more closely 
at the genetic risks to natural Chinook salmon populations. 
 

These thresholds are rationally connected to the take pathway because they measure the extent to 
which interactions are occurring which could lead to genetic effects. They can reasonably be 
measured and monitored through the monitoring requirements in the proposed action. 
 
For the ecological effects of redd superimposition and spawning site competition associated with the 
coho salmon hatchery programs, the take surrogate is the proportion of hatchery fish spawning 
naturally compared to the baseline numbers in Table 29. The number of hatchery-origin fish on the 
spawning grounds in Cedar River shall not increase by more than 46% based on a 5-year running 
average beginning in 2020 (average of 2016-2020). This take surrogate can be reliably measured and 
monitored through weir collections, CWT recoveries, and hatchery rack returns. 
 
The third take pathway for this factor is the handling/tagging of listed hatchery and natural-origin 
Chinook salmon and steelhead at adult collection facilities to facilitate broodstock collection, and 
sampling of fish for monitoring and evaluation. The amount of incidental take of ESA-listed 
steelhead and fall Chinook salmon expected to occur as a result of the proposed action by this 
pathway is contained in Table 23 the column titled Proposed Handling. Additional take would occur 
during collection at Bear Creek weir. The amount of incidental take of ESA-listed steelhead and 
fall Chinook salmon expected to occur as a result of the proposed action by this pathway is 
contained in (Table 21). 
 
Factor 3: Hatchery fish and the progeny of naturally spawning hatchery fish in juvenile 
rearing areas 

Predation, competition, or pathogen transmission, collectively referred to as ecological 
interactions, between natural-origin juvenile Chinook salmon and steelhead and hatchery coho 
and Chinook could result in take of natural-origin Chinook salmon and steelhead. In addition, 
non-migrating fish could also cause genetic effects when non-migrating fish spawn naturally 
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(residualized Chinook or coho). This type of take is difficult to quantify because it cannot be 
observed, and, therefore, cannot be directly or reliably measured.  However, as described in 
section 2.5.2.3.1.1, ecological interactions are the direct result of hatchery releases and so 
anticipated ecological effects can be evaluated using the PCDRisk Model.  
 
Thus, we will rely on a take surrogate, to ascertain the extent of the effects of non-migrating  
hatchery juveniles. Hatchery releases shall not release more than the planned release targets of six 
million juveniles from facilities as described in Table 4 of the proposed action.  
 
This surrogate has a rational connection to the amount of take expected from competition and 
predation, as more of these events will occur as more fish are released from the hatchery. NMFS 
expects some annual variability in release numbers based on normal hatchery operations. NMFS will 
annually determine whether take has been exceeded when final release data become available, 
unless the number of smolts released after one or two years is so high that attainment of the 
proposed release numbers across five years is not a reasonable expectation, in which case NMFS 
will consider the take limit to have been exceeded at that time. 
 
Regarding take associated with non-migrating hatchery fish, NMFS will rely on a surrogate that 
determines what proportion of the release falls below an emigration size threshold. This is a 
reasonable, reliable, and measurable surrogate for incidental take because fish below the 
threshold are unlikely to be physiologically ready to migrate, and if the proportion of the release 
below the emigration size threshold is exceeded , it is a sign that more fish may have longer 
freshwater residence times. This threshold will be monitored using proportion of fish below the 
emigration size threshold prior to release, or other juvenile monitoring techniques developed by 
the operators and approved by NMFS. 
 
Regarding take associated with residualized Coho, NMFS will rely on a surrogate that consists of 
the proportion of the release which would be smolts and more likely to be ready to migrate. The 
five-year running geometric mean of juvenile Coho classified as parr or precocious shall not 
exceed 10% of the total release of 750,000 sub yearlings and 90,000 age 0 smolts (as described 
in Table 4). This is a criteria of qualitative categorization based on the body condition and 
behavior of fish at the time of release was developed. This system is modeled after that described 
in Tatara et al. 2019 for measuring the degree of steelhead smoltification.  Coho will be 
categorized as one of three types: 

• “parr” are fish that display distinct parr marks,   
• “transitional” are fish that display fading parr marks, and  
• “smolts”are fish that display a predominate absence of parr marks and presence of 

mostly silver coloration. 
 
This is a reasonable surrogate for incidental take because fish that are released before 
smlotification are unlikely to be physiologically ready to migrate, and if the released fish are not 
fully smolts then it is a sign that they may have longer freshwater residence and an increased 
potential for residualism. This threshold will be monitored using the described classification 
system above and if parr and precocious fish exceed 5% of the total juvenile release, the 
expected take from interactions of residualized fish would have likely been exceeded. 
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In-Hatchery Losses  

Under Factor 3, we analyze losses that occur within the hatchery (Section 2.5.2.3.4), which 
constitutes take of those listed individuals. The egg to release loss rates averaged 20 percent for 
the Fall Chinook salmon program over the 2004-2015 brood years. Based on the analysis in 
Section 2.4.2.3.3., when the fall Chinook salmon hatchery program is operating as a genetically-
linked program, should in-hatchery losses from egg to release exceed 20 percent annually over 
three consecutive years, NMFS will need to reevaluate the effect of this loss on the natural fall 
Chinook salmon population. Therefore, the take associated with this pathway is expected to be 
no more than 20% of juvenile Chinook salmon inside the hatchery in any one year, and no more 
than 18% over three consecutive years. 
 
2.9.2. Effect of the Take 

In Section 2.8, NMFS determined that the level of anticipated take, coupled with other effects of 
the proposed action, is not likely to result in jeopardy of the Puget Sound Chinook Salmon ESU 
or the Puget Sound Steelhead DPS or in the destruction or adverse modification of designated 
critical habitat. 
 
2.9.3. Reasonable and Prudent Measures 

“Reasonable and prudent measures” are measures that are necessary or appropriate to minimize 
the impact of the amount or extent of incidental take (50 CFR 402.02). 
 
NMFS concludes that the following reasonable and prudent measures are necessary and 
appropriate to minimize incidental take. NMFS shall ensure that: 
 

1. The applicants implement the hatchery programs and operate the hatchery facilities as well 
as guidelines specified in this opinion for their respective programs. 

2. The applicants monitor activities and provide reports to SFD annually for all hatchery 
programs and associated RM&E. 
 

2.9.4. Terms and Conditions 

In order to be exempt from the prohibitions of section 9 of the ESA, the Federal action agency 
must comply (or must ensure that any applicant complies) with the following terms and 
conditions. Action Agencies have a continuing duty to monitor the impacts of incidental take and 
must report the progress of the action and its impact on the species as specified in this incidental 
take statement (50 CFR 402.14). If the entity to whom a term and condition is directed does not 
comply with the following terms and conditions, protective coverage for the proposed action 
would likely lapse. NMFS shall ensure that: 

1. The applicants implement the hatchery programs and operate the hatchery facilities as 
well as guidelines specified in this opinion for their respective programs, including:  

a. Provide advance notice of any change in program operation and implementation 
that may increase the amount or extent of take, or results in an effect of take not 
previously considered. 
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b. Notify NMFS SFD within 48 hours after knowledge of exceeding authorized take. 
The applicants shall submit a written report, and/or convene a discussion with 
NMFS to discuss why the authorized take was exceeded. 

c. If the five-year running geometric mean of hatchery releases exceeds the 
proposed release numbers by 10%, or the number of smolts released after one or 
two years is so high that attainment of the proposed release numbers across five 
years is not a reasonable expectation, the applicants and NMFS will re-evaluate 
competition and predation risks to natural Chinook salmon populations. 

d. If the five-year running geometric mean of juvenile Coho classified as parr or 
precocious exceed 10% of the total release, or the number released after one or 
two years is so high that attainment of the proposed release numbers across five 
years is not a reasonable expectation, the applicants and NMFS will re-evaluate 
competition and predation risks to natural Fall Chinook salmon populations.  

e. The applicants shall submit a written report or summary of research conducted by 
MIT and WDFW as discussed in section 1.3.4 once data for all three brood years 
of non-acclimated releases are obtained. 

f. Analysis assumed pHOS in Cedar River would range between 30 and 46 percent 
while the fall Chinook program is operating as a segregated program (based on 
analysis in section 2.5.2.2.1). If the five year running average for pHOS in the 
Cedar River exceeds maximum pHOS (46%; Table 29) or if pHOS after one or 
two years is so high that attainment of expected pHOS value across five years is 
not a reasonable expectation, or if data indicates that the assumptions of the model 
are incorrect, co-managers and NMFS will look more closely at the genetic risks 
to natural Chinook salmon populations. 

g. Provide plans for future projects and/or changes in sampling locations or 
protocols and obtain concurrence from NMFS prior to implementation of such 
changes.  

2. The applicants provide reports to SFD annually for their respective programs, including 
associated RM&E. All reports and required notifications are to be submitted 
electronically to the NMFS, West Coast Region, Sustainable Fisheries Division, APIF 
Branch. The current point of contact for document submission is Chanté Davis (503-231-
2307, chante.davis@noaa.gov). 

a. An annual RM&E report(s) is submitted by applicants no later than April 15 of 
the year following releases and associated RM&E (e.g., release/RM&E in year 
2021, report due April 2022), and should include: 

i. The number and origin (hatchery and natural) of each listed species 
handled and incidental mortality across all activities and facilities 

ii. Hatchery Environment Monitoring Reporting 

• Number and composition of broodstock, and dates of collection 
• Numbers, dates, locations, size, coefficient of variation, and 

tag/mark information of released fish 

mailto:chante.davis@noaa.gov
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• From a representative sample of 200 fish at time of release, the 
number of fish that are categorized as either parr, transitional, 
smolt, or precocious following a qualitative criteria explained in 
section 2.9.1 

• Disease occurrence at hatcheries 
• Any problems that may have arisen during hatchery activities 
• Any unforeseen effects on listed fish 

iii. Natural Environment Monitoring Reporting 

• The number of returning hatchery and natural-origin adults 
• The number and species of listed fish encountered at each adult 

collection location, and the number that die 
• Mean length, coefficient of variation, number, and age of natural-

origin juveniles during RM&E activities 
 

2.9.5. Conservation Recommendations 

Section 7(a)(1) of the ESA directs Federal agencies to use their authorities to further the 
purposes of the ESA by carrying out conservation programs for the benefit of threatened and 
endangered species. Specifically, conservation recommendations are suggestions regarding 
discretionary measures to minimize or avoid adverse effects of a Proposed Action on listed 
species or critical habitat (50 CFR 402.02). NMFS has identified two conservation 
recommendations appropriate to the Proposed Action:  

1. Based on analysis in section 2.5.2.2, pHOS in the Cedar River would increase from 
current levels, falling within a range of 30 – 46%.  A range of analysis was evaluated to 
understand changes in pHOS. There are two locations within Cedar River where HOR 
may be removed during collection of broodstock for the sockeye program (Landsburg 
Dam and Cedar River weir).  With the removal of HOR at these locations, it is possible 
to further reduce pHOS by 1 to 15 percentage points depending on scenario (cite 
Haggarty 2021 ).  This is not included in the proposed action and not assumed to occur 
in formulating NMFS’ opinion. 

Table 29: pHOS in Cedar River given each release scenario and removal of 
hatchery-origin fall-run Chinook salmon at either Cedar River Weir (RM 1.0) or 
Landsburg Dam (RM 21.9).  

 Scenario  No 
removal 
of HOS 

  Removal of 
HOS at Cedar 
River Weir 

  Removal of 
HOS at 
Landsburg 
Dam 

  Removal of 
HOS at weir 
and dam 

  

4.8 % TE 20% TE 40% 
TE 

4.8 % 
TE 

20% TE 40% TE 

1B 36.90% 35.70% 31.80% 25.90% 33.10% 32.10% 28.40% 22.90% 
2B 41.90% 40.70% 36.60% 30.20% 37.90% 36.80% 32.90% 26.90% 

3B 45.50% 44.30% 40.10% 33.40% 41.50% 40.20% 36.20% 29.80% 
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2.10. Re-initiation of Consultation 

This concludes formal consultation for [name of action]. 
 
Under 50 CFR 402.16(a): “Reinitiation of consultation is required and shall be requested by the 
Federal agency or by the Service where discretionary Federal agency involvement or control 
over the action has been retained or is authorized by law and:  (1) the amount or extent of 
incidental take is exceeded, (2) new information reveals effects of the agency action that may 
affect listed species or critical habitat in a manner or to an extent not considered in this opinion, 
(3) the agency action is subsequently modified in a manner that causes an effect on the listed 
species or critical habitat that was not considered in this opinion, or (4) a new species is listed or 
critical habitat designated that may be affected by the action.” 
 
2.11. Not Likely to Adversely Affect Determinations 

2.11.1. Hood Canal Summer Chum Salmon ESU 

On June 28, 2005, NMFS listed Hood Canal Summer (HCS) chum salmon—both natural-origin 
and some artificially-propagated fish—as a threatened species (70 FR 37160). The effects of take 
associated with implementation of Puget Sound region hatchery salmon and steelhead production on 
the Hood Canal Summer Chum Salmon ESU were previously evaluated by NMFS (NMFS 2002a; 
2002b). 
 
The species comprises all naturally spawned populations of summer-run chum salmon in Hood 
Canal and its tributaries as well as populations in Olympic Peninsula rivers between Hood Canal 
and Dungeness Bay, Washington. The ESU has two populations, each containing multiple stocks 
or spawning aggregations. Juveniles, typically as fry, emerge from the gravel and outmigrate 
almost immediately to seawater. For their first few weeks, they reside in the top two to three 
centimeters of estuarine surface waters while staying extremely close to the shoreline 
(WDFW/PNPTT 2000). Subadults and adults forage in coastal and offshore waters of the North 
Pacific Ocean before returning to spawn in their natal streams. HCS chum salmon spawn from 
mid-September to mid-October in the mainstems and lower river basins. 
 
Natural-origin spawner abundance has increased since their 1999 ESA-listing (64 FR 14508) and 
spawning abundance targets in both populations have been met in some years (NWFSC 2015). 
Productivity was quite low at the time of the last review (Ford 2011), though rates have 
increased in the last five years, and have been greater than replacement rates in the past two 
years for both populations. For each population, spatial structure and diversity viability 
parameters have increased and nearly meet the viability criteria. However, only two of eight 
individual spawning aggregates have viable performance. Despite substantive gains towards 
meeting viability criteria in the Hood Canal and Strait of Juan de Fuca summer chum salmon 
populations, the ESU still does not meet all of the recovery criteria for population viability at this 
time (NWFSC 2015). 
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HCS chum salmon would potentially be encountered by juvenile fish released from our Proposed 
Action during their emigration to marine waters after release. Thus, the only anticipated effects 
on HCS chum salmon are likely to be competition and predation. Due to the vast number of fall 
chum salmon in the Puget Sound area, it is likely that releases of hatchery fish from the Proposed 
Action are more likely to encounter fall chum fry and adults than summer chum fry and adults in 
the marine environment. Also, summer chum are likely to emigrate to the marine area in March 
(Tynan 1997), earlier than most of the releases of hatchery fish in Lake Washington. Thus, 
NMFS believes that effects through competition and predation of the Proposed Action on HCS 
chum salmon are discountable. 
 
Because the only anticipated effects of the proposed action on Hood Canal Summer Chum are 
discountable, NMFS determines that the proposed action is not likely to adversely affect the 
ESA. 
 
2.11.2. Ozette Lake Sockeye Salmon ESU 

The Ozette Lake Sockeye Salmon ESU was listed as a threatened species in 1999 (64 FR 14528; 
March 25, 1999). The ESU includes all naturally spawned populations of sockeye salmon in 
Ozette Lake and streams and tributaries flowing into Ozette Lake, Washington. The Puget Sound 
Technical Recovery Team considers the Ozette Lake Sockeye Salmon ESU to comprise one 
historical population with multiple spawning aggregations. The primary existing spawning 
aggregations occur in two beach locations—Allen’s and Olsen’s Beaches—and in two 
tributaries—Umbrella Creek and Big River. The ESU also includes fish originating from two 
artificial propagation programs: the Umbrella Creek and Big River sockeye hatchery programs. 
 
After hatching, most juveniles spend one winter in Ozette Lake rearing before outmigrating to 
the ocean as two-year-old fish during April and May (Dlugokenski et al. 1981). The fish 
typically spend two years in the northeast Pacific Ocean foraging on zooplankton, squid, and, 
infrequently, on small fishes (Scott and Crossman 1973). Migration of adult sockeye salmon up 
the Ozette River generally occurs from mid-April to mid-August (WDFW 1993).  
 
From 1977 to 2011, the estimated natural spawners ranged from 699 to 5,313 (NWFSC 2015), 
well below the 31,250 – 121,000 viable population range proposed in the recovery plan (NMFS 
2009). Over the last few decades, productivity appears to have remained stable around 1. The 
Umbrella Creek Hatchery program has successfully introduced a tributary spawning aggregate, 
increasing the diversity of age at return. However, the beach spawning aggregate is considered 
the core group of interest for recovery; the current number of beach spawners is well below 
historical levels and restricted to a subset of historical spawning beaches (NWFSC 2015). 
 
Lake Ozette sockeye salmon would potentially be encountered by juvenile fish released from our 
Proposed Action during their emigration to offshore marine waters after release. Thus, the only 
anticipated effects on Lake Ozette sockeye salmon are likely to be through competition and 
predation. Lake Ozette sockeye salmon emigrate to marine areas in April to May (Haggerty et al. 
2009), and would likely reach marine areas earlier than most of the releases of hatchery fish in 
the Lake Washington watershed because they are released during the same timeframe, but have a 
much greater distance to travel. In addition, juvenile sockeye salmon are present close to shore 
from Cape Flattery to Yakutat in July and August and then move offshore in late Autumn or 
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winter. The nearshore around the Ozette River is a productive, shallow sub-tidal environment 
(Haggerty et al. 2009), and it is assumed that very few if any of these fish move into Puget 
Sound marine areas. Thus, NMFS believes that the effects of competition and predation of our 
Proposed Action on Lake Ozette sockeye salmon are discountable. 
 
Because the only anticipated effects of the proposed action on Lake Ozette Sockeye Salmon are 
discountable, NMFS determines that the proposed action is not likely to adversely affect the 
ESU. 

3. MAGNUSON-STEVENS FISHERY CONSERVATION AND MANAGEMENT ACT ESSENTIAL FISH 
HABITAT CONSULTATION 

Section 305(b) of the MSA directs Federal agencies to consult with NMFS on all actions or 
proposed actions that may adversely affect EFH. Under the MSA, this consultation is intended to 
promote the conservation of EFH as necessary to support sustainable fisheries and the managed 
species’ contribution to a healthy ecosystem. For the purposes of the MSA, EFH means “those 
waters and substrate necessary to fish for spawning, breeding, feeding, or growth to maturity”, 
and includes the physical, biological, and chemical properties that are used by fish (50 CFR 
600.10). Adverse effect means any impact that reduces quality or quantity of EFH, and may 
include direct or indirect physical, chemical, or biological alteration of the waters or substrate 
and loss of (or injury to) benthic organisms, prey species and their habitat, and other ecosystem 
components, if such modifications reduce the quality or quantity of EFH. Adverse effects on 
EFH may result from actions occurring within EFH or outside of it and may include site-specific 
or EFH-wide impacts, including individual, cumulative, or synergistic consequences of actions 
(50 CFR 600.810). Section 305(b) of the MSA also requires NMFS to recommend measures that 
can be taken by the action agency to conserve EFH. Such recommendations may include 
measures to avoid, minimize, mitigate, or otherwise offset the adverse effects of the action on 
EFH [CFR 600.905(b)]. 
 
This analysis is based, in part, on descriptions of EFH for Pacific coast salmon (PFMC 2014) 
contained in the fishery management plans developed by the Pacific Fishery Management 
Council (PFMC) and approved by the Secretary of Commerce. 
 
3.1. Essential Fish Habitat Affected by the Project 

The action area of the Proposed Action includes habitat described as EFH for Chinook, pink, and 
coho salmon. Marine EFH for Chinook, coho, and Puget Sound pink salmon in Washington, 
Oregon, and California includes all estuarine, nearshore and marine waters within the western 
boundary of the EEZ, 200 miles offshore. Freshwater EFH for Pacific salmon, includes all those 
streams, lakes, ponds, wetlands, and other water bodies currently, or historically accessible to 
salmon in Washington, Oregon, Idaho, and California, except areas upstream of certain 
impassable manmade barriers, and long-standing, naturally-impassable barriers (i.e., natural 
waterfalls in existence for several hundred years). As described by PFMC (2014), within these 
areas, freshwater EFH for Pacific salmon consists of four major components: (1) spawning and 
incubation; (2) juvenile rearing; (3) juvenile migration corridors; and (4) adult migration 
corridors and adult holding habitat. Marine EFH for Chinook and coho salmon consists of three 
components, (1) estuarine rearing; (2) ocean rearing; and (3) juvenile and adult migration. 
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EFH for groundfish includes all waters, substrates and associated biological communities from 
the mean higher high water line, or the upriver extent of saltwater intrusion in river mouths, 
seaward to the 3500 meters in depth contour plus specified areas of interest such as seamounts. A 
more detailed description and identification of EFH for groundfish is found in the Appendix B of 
Amendment 25 to the Pacific Coast Groundfish Management Plan (PFMC 2016c).  
 
EFH for coastal pelagic species includes all marine and estuarine waters from the shoreline along 
the coasts of California, Oregon, and Washington offshore to the limits of the EEZ and above the 
thermocline where sea surface temperatures range between 10°C to 26°C. A more detailed 
description and identification of EFH for coastal pelagic species is found in Amendment 15 to 
the Coastal Pelagic Species Fishery Management Plan (PFMC 2016a). 
 
3.2. Adverse Effects on Essential Fish Habitat 

3.2.1. EFH for Pacific Salmon 

The release of salmon through the proposed hatchery programs may lead to effects on EFH 
through effects of competition for spawning habitat or redd superimposition. The biological 
opinion describes impacts the hatchery programs might have on naturally spawning salmon 
populations in Section 2.5.2. Because the intent of the hatchery Chinook, Coho, and Sockeye 
salmon programs is to produce fish that will augment harvests for marine and freshwater 
commercial and recreational fishing areas. Therefore the majority of salmon produced through 
the programs will be harvested in pre-terminal and terminal area fisheries, reducing the number 
of salmon that would escape to spawn in freshwater EFH. A substantial proportion of hatchery-
produced salmon escaping terminal area fisheries home to their hatchery releases sites, further 
reducing the number of hatchery salmon that escape into natural spawning areas that are part of 
EFH in the basin.  
 
The Proposed Action is likely to affect freshwater EFH for Chinook and coho salmon through 
the effluent discharge from the hatchery facilities. As described in Section 2.5.2.5 , effluent 
discharge from hatchery facilities can adversely affect water quality by raising temperatures, 
reducing dissolved-oxygen levels, and potentially affecting pH. The proposed hatchery 
programs minimize each of these effects through compliance with the NPDES permits, where 
applicable. 
 
As described in section 111.3.8 and Table 7, water withdrawal for hatchery operations can 
adversely affect salmon by reducing streamflow, impeding migration, or reducing other stream-
dwelling organisms that could serve as prey for juvenile salmonids. Water withdrawals can also 
kill or injure juvenile salmonids through impingement upon inadequately designed intake screens 
or by entrainment of juvenile fish into the water diversion structures. The proposed hatchery 
programs include designs that minimize each of these effects. In general, water withdrawals are 
small enough in scale that changes in flow would be undetectable, and impacts would not occur. 
 
Also competition/predation in the migration corridors would not lead to effects on EFH through 
predation on and competition with listed salmon and steelhead. Competition for food resources 
in Puget Sound marine areas between hatchery-origin Chinook salmon and steelhead is not likely 
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a substantial risk factor. Spatial and temporal differences in emigration behaviors and residence 
time in Puget Sound between Chinook salmon, and steelhead, (Rensel et al. 1984; Duffy 2003; 
Fresh 2006), size differences at release, and partitioning of available food resources in marine 
areas (Duffy 2003) limit the risk of any substantial competition effects. 
 
Regarding hatchery facility operation effects on salmon EFH, the adult salmon holding and 
spawning habitat, and juvenile salmon rearing locations, are not expected to be affected by the 
operation of the hatchery programs, as no modifications to these areas would occur. Our analysis 
of facility effects did not reveal any substantial concerns related to screening, water withdrawal, 
or effluent (see Section 2.5.2.5). 
 
Regarding hatchery facility operation effects on salmon EFH, the Issaquah hatchery water intake 
screens on Issaquah creek and Cedar River Hatcheries water intake screens on Cedar River are in 
compliance with state and federal guidelines (NMFS 1995; 1996), and the screens meet current 
NMFS Anadromous Salmonid Passage Facility Design Criteria (NMFS 2011a) designed to 
protect natural-origin salmon from injury and mortality. The UW ARF hatchery is an infiltration 
gallery and meets NMFS screening criteria as applicable. 
 
3.2.2. EFH for groundfish and coastal pelagic species 

The proposed action is not likely to have adverse effects on EFH for groundfish. Of the potential 
adverse effects listed in (PFMC 2016b), effect on water quality is listed as a major concern of 
water use. However, all relevant facilities have NPDES permits to minimize effects on water 
quality. Altering natural flows is not a concern associated with hatchery operations because the 
hatcheries are not altering the flow rate in Puget Sound enough for the effects to be detectable in 
the groundfish EFH. Affecting prey base and entrapping fish through water withdrawal is not 
adversely affected by hatchery operations because water is not withdrawn within the groundfish 
EFH. Finally, adverse effects associated with dams are not relevant to hatchery operations 
because hatchery operations do not affect how dams are operated. 
 
All relevant facilities have NPDES permits to minimize effects on water quality. Altering natural 
flows is not a concern associated with hatchery operations because the hatcheries are not altering 
the flow rate in Puget Sound enough for the effects to be detectable in the groundfish EFH. 
Affecting prey base and entrapping fish through water withdrawal is not adversely affected by 
hatchery operations because water is not withdrawn within the groundfish EFH. Adverse effects 
associated with dams are not relevant to hatchery operations because hatchery operations do not 
affect how dams are operated. 
 
The proposed action is not likely to have adverse effects on EFH for the coastal pelagic species. 
Of the potential adverse effects listed in (PFMC 2016a) and (PFMC 2016b), effects of hatchery 
operations could be analogous to adverse effects of aquaculture; organic waste, release of high 
levels of antibiotics, disease, and escapees. However, these analogous concerns for hatchery 
operations are not likely to adversely affect coastal pelagic species because all relevant facilities 
have NPDES permits to minimize effects of organic waste, and antibiotics would be diluted to 
manufacturer labeling. Concerns of disease transfer from and escapees of salmonid species are 
not likely to be a concern because coastal pelagic species are not closely related to the salmonid 
species. 
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The proposed action is not likely to have adverse effects on EFH for coastal pelagic species or 
EFH for groundfish.  
 
3.3. Essential Fish Habitat Conservation Recommendations 

Because of the pathways by which hatchery programs can potentially effect EFH (specific to 
applicable management plans), and given the relatively small magnitude of effects (if any) on 
EFH of the Proposed Action, it is difficult to specify the best approaches to avoid or minimize 
potential adverse effects.  For the current Proposed Action, NMFS recognizes that the HGMPs 
and the ITS (section 2.9), while describing steps beyond those necessary to address EFH effects, 
include all reasonable steps to address any potential adverse EFH effects. Therefore, beyond the 
measures included in the proposed action, NMFS has no additional EFH conservation 
recommendations. 
 
3.4. Statutory Response Requirement 

As required by section 305(b)(4)(B) of the MSA, the Federal agency must provide a detailed 
response in writing to NMFS within 30 days after receiving an EFH Conservation 
Recommendation from NMFS. Such a response must be provided at least 10 days prior to final 
approval of the action if the response is inconsistent with any of NMFS’ EFH Conservation 
Recommendations, unless NMFS and the Federal agency have agreed to use alternative time 
frames for the Federal agency response. The response must include a description of measures 
proposed by the agency for avoiding, mitigating, or offsetting the impact of the activity on EFH. 
In the case of a response that is inconsistent with NMFS Conservation Recommendations, the 
Federal agency must explain its reasons for not following the recommendations, including the 
scientific justification for any disagreements with NMFS over the anticipated effects of the 
action and the measures needed to avoid, minimize, mitigate, or offset such effects [50 CFR 
600.920(k)(1)]. 
 
In response to increased oversight of overall EFH program effectiveness by the Office of 
Management and Budget, NMFS established a quarterly reporting requirement to determine how 
many conservation recommendations are provided as part of each EFH consultation and how 
many are adopted by the action agency. 

3.5. Supplemental Consultation 

The NMFS must reinitiate EFH consultation with NMFS if the Proposed Action is substantially 
revised in a way that may adversely affect EFH, or if new information becomes available [50 
CFR 600.920(l)]. 

4. DATA QUALITY ACT DOCUMENTATION AND PRE-DISSEMINATION REVIEW 

Section 515 of the Treasury and General Government Appropriations Act of 2001 (Public Law 
106-554) (“Data Quality Act”) specifies three components contributing to the quality of a 
document. They are utility, integrity, and objectivity. This section of the opinion addresses these 
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DQA components, document compliance with the Data Quality Act, and certifies that this 
opinion has undergone pre-dissemination review. 
 
4.1. Utility 

Utility principally refers to ensuring that the information contained in this consultation is helpful, 
serviceable, and beneficial to the intended users. NMFS has determined, through this ESA 
section 7 consultation, that operation of the 5 hatchery programs in Lake Washington watershed 
as proposed will not jeopardize ESA-listed species, will not destroy or adversely modify 
designated critical habitat, and will adversely affect essential fish habitat. Therefore, NMFS can 
issue an ITS. The intended users of this opinion are the Muckleshoot Indian Tribe and WDFW 
(operators); NMFS (regulatory agency); USFWS (regulatory agency); Seattle Public Utility 
(funders). The scientific community, resource managers, and stakeholders benefit from the 
consultation through adult returns of program-origin salmon to Lake Washington watershed and 
Puget Sound, and through the collection of data indicating the potential effects of the hatchery 
programs on the viability of natural populations of Puget Sound Chinook salmon and Puget 
Sound steelhead. This information will improve scientific understanding of hatchery-origin 
salmon effects on natural populations that can be applied broadly within the Pacific Northwest 
area for managing benefits and risks associated with hatchery operations. The document will be 
available through the NOAA Institutional Repository approximately two weeks after signature. 
The format and naming adheres to conventional standards for style. 

4.2. Integrity 

This consultation was completed on a computer system managed by NMFS in accordance with 
relevant information technology security policies and standards set out in Appendix III, 
“Security of Automated Information Resources,” Office of Management and Budget Circular A-
130; the Computer Security Act; and the Government Information Security Reform Act. 

4.3. Objectivity 

Information Product Category: Natural Resource Plan 
 
Standards: This consultation and supporting documents are clear, concise, complete, and 
unbiased, and were developed using commonly accepted scientific research methods. They 
adhere to published standards including the NMFS ESA Consultation Handbook, ESA 
Regulations, 50 CFR 402.01 et seq., and the MSA implementing regulations regarding EFH, 50 
CFR 600.920(j). 
 
Best Available Information: This consultation and supporting documents use the best available 
information, as described in the references section. The analyses in this biological opinion/EFH 
consultation contain more background on information sources and quality. 
 
Referencing: All supporting materials, information, data, and analyses are properly referenced, 
consistent with standard scientific referencing style. 

 

https://repository.library.noaa.gov/
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Review Process: This consultation was drafted by NMFS staff with training in ESA and MSA 
implementation, and reviewed in accordance with West Coast Region ESA quality control and 
assurance processes. 
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5. APPENDIX A: EFFECTS OF HATCHERY PROGRAMS ON SALMON AND STEELHEAD 
POPULATIONS: REFERENCE DOCUMENT FOR NMFS ESA HATCHERY CONSULTATIONS 
(REVISED JULY 29, 2020)1  

NMFS applies available scientific information, identifies the types of circumstances and 
conditions that are unique to individual hatchery programs, then refines the range in effects for a 
specific hatchery program. Our analysis of a Proposed Action addresses six factors: 
  

(1) The hatchery program does or does not remove fish from the natural population and use 
them for hatchery broodstock, 

(2) Hatchery fish and the progeny of naturally spawning hatchery fish on spawning grounds 
and encounters with natural-origin and hatchery fish at adult collection facilities, 

(3) Hatchery fish and the progeny of naturally spawning hatchery fish in juvenile rearing 
areas, the migration corridor, estuary, and ocean, 

(4) RM&E that exists because of the hatchery program, 
(5) Operation, maintenance, and construction of hatchery facilities that exist because of the 

hatchery program, and 
(6) Fisheries that would not exist but for the hatchery program, including terminal fisheries 

intended to reduce the escapement of hatchery-origin fish to spawning grounds. 
 

Because the purpose of biological opinions is to evaluate if proposed actions pose unacceptable 
risk (jeopardy) to listed species, much of the language in this appendix addresses risk. However, 
we also consider that hatcheries can be valuable tools for conservation or recovery, for example 
when used to prevent extinction or conserve genetic diversity in a small population, or to 
produce fish for reintroduction. 
 
The following sections describe each factor in detail, including as appropriate, the scientific basis 
for and our analytical approach to assessment of effects. The material presented in this Appendix 
is only scientific support for our approach; social, cultural, and economic considerations are not 
included. The scientific literature on effects of salmonid hatcheries is large and growing rapidly. 
This appendix is thus not intended to be a comprehensive literature review, but rather a 
periodically updated overview of key relevant literature we use to guide our approach to effects 
analysis. Because this appendix can be updated only periodically, it may sometimes omit very 
recent findings, but should always reflect the scientific basis for our analyses. Relevant new 
information not cited in the appendix will be cited in the other sections of the opinion that detail 
our analyses of effects. 
 
In choosing the literature we cite in this Appendix, our overriding concern is our mandate to use 
“best available science”. Generally, this means recent peer-reviewed journal articles and books. 
However, as appropriate we cite older peer-reviewed literature that is still relevant, as well as 
“gray” literature. Although peer-review is typically considered the “gold standard” for scientific 
information, occasionally there are well-known and popular papers in the peer-reviewed 
                                                 
1 This version of the appendix supersedes all earlier dated versions and the (NMFS 2012a) standalone document of 
the same name. 
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literature we do not cite because we question the methodology, results, or conclusions. In citing 
sources, we also consider availability, and try to avoid sources that are difficult to access. For 
this reason, we generally avoid citing master’s theses and doctoral dissertations, unless they 
provide unique information.  
 
5.1. Factor 1. The hatchery program does or does not remove fish from the natural 

population and use them for hatchery broodstock 

A primary consideration in analyzing and assessing effects for broodstock collection is the origin 
and number of fish collected. The analysis considers whether broodstock are of local origin and 
the biological benefits and risks of using ESA-listed fish (natural or hatchery-origin) for hatchery 
broodstock. It considers the maximum number of fish proposed for collection and the proportion 
of the donor population collected for hatchery broodstock. “Mining” a natural population to 
supply hatchery broodstock can reduce population abundance and spatial structure 
 
5.2. Factor 2. Hatchery fish and the progeny of naturally spawning hatchery fish on 

spawning grounds and encounters with natural and hatchery fish at adult collection 
facilities. 

There are three aspects to the analysis of this factor: genetic effects, ecological effects, and 
encounters at adult collection facilities. We present genetic effects first. For the sake of 
simplicity, we discuss genetic effects on all life stages under factor 2. 
 
5.2.1. Genetic effects (Revised July 29, 2020) 

5.2.1.1. Overview  

Based on currently available scientific information, we generally view the genetic effects of 
hatchery programs as detrimental to the ability of a salmon population’s ability to sustain itself in 
the wild. We believe that artificial breeding and rearing is likely to result in some degree of 
change of genetic diversity and fitness reduction in hatchery-origin. Hatchery-origin fish can 
thus pose a risk to diversity and to salmon population rebuilding and recovery when they 
interbreed with natural-origin fish. However, conservation hatchery programs may prevent 
extinction or accelerate recovery of a target population by increasing abundance faster than may 
occur naturally (Waples 1999). Hatchery programs can also be used to create genetic reserves for 
a population to prevent the loss of its unique traits due to catastrophes (Ford et al. 2011). 
 
We recognize that there is considerable debate regarding aspects of genetic risk. The extent and 
duration of genetic change and fitness loss and the short- and long-term implications and 
consequences for different species (i.e., for species with multiple life-history types and species 
subjected to different hatchery practices and protocols) remain unclear and should be the subject 
of further scientific investigation. As a result, we believe that hatchery intervention is a 
legitimate and useful tool to alleviate short-term extinction risk, but otherwise managers should 
seek to limit interactions between hatchery and natural-origin fish and implement hatchery 
practices that harmonize conservation with the implementation of treaty Indian fishing rights and 
other applicable laws and policies (NMFS 2011d). We expect the scientific uncertainty 
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surrounding genetic risks to be reduced considerably in the next decade due to the rapidly 
increasing power of genomic analysis (Waples et al. 2020). 
 
Four general processes determine the genetic composition of populations of any plant or animal 
species(e.g., Falconer and MacKay 1996): 
 

• Selection- changes in genetic composition over time due to some genotypes being more 
successful at survival or reproduction (i.e, more fit) than others 

• Migration- individuals, and thus their genes, moving from one population to another 
• Genetic drift- random loss of genetic material due to finite population size 
• Mutation- generation of new genetic diversity through changes in DNA 

 
Mutations are changes in DNA sequences that are generally so rare2 that they can be ignored for 
relatively short-term evaluation of genetic change, but the other three processes are 
considerations in evaluating the effects of hatchery programs on the productivity and genetic 
diversity of natural salmon and steelhead populations. Although there is considerable biological 
interdependence among them, we consider three major areas of genetic effects of hatchery 
programs in our analyses:  
 

• Within-population genetic diversity 
• Among-population genetic diversity/outbreeding 
• Hatchery-influenced selection  
 

The first two areas are well-known major concerns of conservation biology (e.g., Frankham et al. 
2010; Allendorf et al. 2013), but our emphasis on what conservation geneticists would likely call 
“adaptation to captivity” (Allendorf et al. 2013, pp. 408-409) reflects the fairly unique position 
of salmon and steelhead among ESA-listed species. In ESA-listed Pacific salmon and steelhead, 
artificial propagation in hatcheries has been used as a routine management tool for many 
decades, and in some cases the size and scope of hatchery programs has been a factor in listing 
decisions.  
 
In the sections below we discuss these three major areas of risk, but preface this with an 
explanation of some key terms relevant to genetic risk, and in some cases terms relevant to 
ecological risk as well. 
 
                                                 
2 For example, the probability of a random base in a DNA molecule in coho salmon is .000000008 (Rougemont et 
al. 2020). 
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Figure 1. Major categories of hatchery program genetic effects analyzed by NMFS 
5.2.1.1.1. Key Terms 

The terms “wild fish” and “hatchery fish” are commonly used by the public, management 
biologists, and regulatory biologists, but their meaning can vary depending on context. For 
genetic risk assessment, more precise terminology is needed:  
 

• Hatchery-origin (HO)- refers to fish that have been reared and released by a hatchery 
program, regardless of the origin of their parents. A series of acronyms has been 
developed for subclasses of HO fish: 
 

o Hatchery-origin recruits (HOR) – HO fish returning to freshwater as adults or 
jacks. Usage varies, but typically the term refers to post-harvest fish that will 
either spawn in nature, used for hatchery broodstock, or surplused. 
 

o Hatchery-origin spawners (HOS)- hatchery-origin fish spawning in nature. 
 

 
o Hatchery-origin broodstock (HOB)- hatchery-origin fish that are spawned in 

the hatchery (i.e., are used as broodstock). 
 

• Natural-origin (NO)- refers to fish that have resulted from spawning in nature, 
regardless of the origin of their parents. A series of acronyms has been developed for 
subclasses of NO fish: 
 

o Natural-origin recruits (NOR) – NO fish returning to freshwater as adults or 
jacks. Usage varies, but typically the term refers to post-harvest fish that will 
either spawn in nature or used for hatchery broodstock. 
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o Natural-origin spawners (NOS)- natural-origin fish spawning in nature. 

 
o Natural-origin broodstock (NOB)- natural-origin fish that are spawned in the 

hatchery (i.e., are used as broodstock). 
 
These terms have led to development of three metrics that are very important to genetic risk 
assessment. They are commonly attributed to the Hatchery Scientific Review Group (HSRG), 
but were developed in 2004 technical discussions between the HSRG and scientists from the 
Washington Department of Fish and Wildlife (WDFW) and the Northwest Indian Fisheries 
Commission (HSRG 2009a). All three are typically computed as means based on multiple 
spawning seasons: 
 

• pHOS - proportion of fish on the spawning grounds consisting of HO fish. 
Mathematically, pHOS = HOS/(HOS + NOS). Assuming random mating, equal 
reproductive success of HO and NO spawners, and no selection, pHOS is the expected 
genetic contribution of HO spawners to the naturally spawning population, i.e., the 
expected level of gene flow from HO fish into the naturally spawning population.  
 
Genetic risk guidelines discussed in Section 5.2.1.4 have been developed based on 
refinements of pHOS: 
 

o pHOScensus - pHOS based on census information (e.g., redd counts, spawner 
counts). pHOS without a subscript usually means pHOScensus 
 

o pHOSeff - pHOScensus discounted by the spawning success of HO fish relative to 
that of NO fish. For example, if HO fish are assumed to be 80 percent as 
reproductively capable as NO fish, then pHOSeff ≈ 0.8 * pHOScensus

3  
 

Because of expected differences in spatial distribution and spawning success between HO and 
NO fish, we consider pHOS an estimate of maximum potential gene flow. As a surrogate metric 
for gene flow, pHOScensus computed over an entire basin becomes increasingly less satisfactory 
as biological complexity is considered (e.g., spawner distributions, sex ratios, varying fecundity). 
In response, approaches for finer scaled computation of pHOS have been developed (HSRG 
2017; Falcy 2019), in addition to the previously mentioned adjustment for relative reproductive 
success. 

 
• pNOB - proportion of fish in the hatchery broodstock consisting of NO fish. 

Mathematically, pNOB = NOB/(HOB + NOB). 
 

• Proportionate natural influence (PNI) - in a population affected by hatchery programs, 
the relative selective influence of the natural environment. In populations affected by 
integrated hatchery programs, PNI is represented mathematically as PNI ≈ pNOB/(pNOB 
+ pHOS). PNI is a confusing concept that we explain in greater detail in Section 5.2.1.4. 

                                                 
3 We present a more precise equation in Section 5.2.1.4. 
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5.2.1.1.1.1. pHOS and mating-type frequency 

Figure  illustrates the expected proportion of mating types in a mixed population of NO and HO 
fish (denoted as N and H, respectively, in the figure) as a function of pHOScensus, assuming that 
NO and HO adults mate randomly4 (Figure ). For example, at a pHOScensus level of 10 percent, 
81 percent of the matings would be expected to be NxN, 18 percent NxH, and 1 percent HxH.  
 
You can also interpret the curves in the diagram as probability of naturally produced progeny of 
specified mating types, assuming random mating and equal reproductive success of all mating 
types. Under this interpretation, for example, progeny produced by a population with a pHOS 
level of 10 percent will have an 81 percent chance of having two NO parents. This logic has 
specific application to Canada’s Wild Salmon Policy (WSP) (FOC 2005), in which wild fish are 
defined as naturally produced fish whose parents were naturally produced. (Withler et al. 2018) 
used mating type probabilities to refine and extend HSRG gene flow guidelines for compatibility 
with the WSP. 
 
 
                                                 
4 We made these computations using the simple mathematical binomial squared expansion (a+b)2=a2 + 2ab + b2 .  
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Figure 2. Relative proportions of mating types as a function of proportion of hatchery-

origin fish on the spawning grounds (pHOS), assuming random mating. Line codes: 
solid = NxN, dashed = NxH, dotted = HxH. Shaded rectangles on left and right 
denote pHOS ranges at which NxN and HxH matings are most probable, 
respectively. 

5.2.1.2. Within-population diversity effects 

Within-population genetic diversity is a general term for the quantity, variety, and combinations 
of genetic material in a population (Busack and Currens 1995). Within-population diversity is 
gained through mutations or gene flow from other populations (described below under 
outbreeding effects) and is lost primarily due to genetic drift. In hatchery programs, diversity 
may also be lost through biased or nonrepresentational sampling incurred during hatchery 
operations, particularly broodstock collection and spawning protocols.  
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5.2.1.2.1. Genetic drift 

Genetic drift is random loss of diversity due to population size. The rate of drift is determined 
not by the census population size (Nc), but rather by the effective population size (Ne). The 
effective size of a population is the size of a genetically “ideal” population (i.e., equal numbers 
of males and females, each with equal opportunity to contribute to the next generation) that will 
display as much genetic drift as the population being examined (e.g., Falconer and MacKay 
1996; Allendorf et al. 2013)5. 
 
This definition can be baffling, so an example is useful. A commonly used effective-size 
equation is Ne = 4 *Nm* Nf /(Nm + Nf), where Nm and Nf are the number of male and female 
parents, respectively. Suppose a steelhead hatchery operation spawns 5 males with 29 females. 
According to the equation, although 34 fish were spawned, the skewed sex ratio made this 
equivalent to spawning 17 fish (half male and half female) in terms of conserving genetic 
diversity because half of the genetic material in the offspring came from only 5 fish. 
 
Various guidelines have been proposed for what levels of Ne should be for conservation of 
genetic diversity. A long-standing guideline is the 50/500 rule (Franklin 1980; Lande and 
Barrowclough 1987): 50 for a few generations is sufficient to avoid inbreeding depression, and 
500 is adequate to conserve diversity over the longer term. One recent review (Jamieson and 
Allendorf 2012) concluded the rule still provided valuable guidance; another (Frankham et al. 
2014) concluded that larger values are more appropriate, basically suggesting a 100/1000 rule. 
See (Frankham et al. 2010) for a more thorough discussion of these guidelines. 
 
Although Ne can be estimated from genetic or demographic data, often-insufficient information 
is available to do this, so for conservation purposes it is useful to estimate effective size from 
census size. As illustrated by the example above, Ne can be considerably smaller than Nc. This is 
typically the case. (Frankham et al. 2014) suggested a Ne:Nc range of ~0.1-0.2 based on a large 
review of the literature on effective size. For Pacific salmon populations over a generation, 
(Waples 2004) arrived at a similar range of 0.05-0.3. 
 
In salmon and steelhead management, effective size concerns are typically dealt with using the 
term effective number of breeders (Nb) in a single spawning season, with per-generation Ne equal 
to the generation time (average age of spawners) times the average Nb (Waples 2004). We will 
use Nb rather than Ne where appropriate in the following discussion.  
 
Hatchery programs, simply by virtue of being able to create more progeny than natural spawners 
are able to, can increase Nb in a fish population. In very small populations, this increase can be a 
benefit, making selection more effective and reducing other small-population risks (e.g., Lacy 
1987; Whitlock 2000; Willi et al. 2006). Conservation hatchery programs can thus serve to 
protect genetic diversity; several programs, such as the Snake River sockeye salmon program, 
are important genetic reserves. However, hatchery programs can also directly depress Nb by three 
principal pathways: 
 
                                                 
5 There are technically two subcategories of Ne: inbreeding effective size and variance effective size. The distinction 
between them is usually not a concern in our application of the concept.  
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• Removal of fish from the naturally spawning population for use as hatchery broodstock. 
If a substantial portion of the population is taken into a hatchery, the hatchery becomes 
responsible for that portion of the effective size, and if the operation fails, the effective 
size of the population will be reduced (Waples and Do 1994).  

 
• Mating strategy used in the hatchery. Nb is reduced considerably below the census 

number of broodstock by using a skewed sex ratio, spawning males multiple times 
(Busack 2007), and by pooling gametes. Pooling milt is especially problematic because 
when milt of several males is mixed and applied to eggs, a large portion of the eggs may 
be fertilized by a single male (Gharrett and Shirley 1985; Withler 1988). This problem 
can be avoided by more structured mating schemes such as 1-to-1 mating. Factorial 
mating schemes, in which fish are systematically mated multiple times, can be used to 
increase Nb (Fiumera et al. 2004; Busack and Knudsen 2007) over what would be 
achievable with less structured designs. Considerable benefit in Nb increase over what is 
achievable by 1-to-1 mating can be achieved through a factorial design as simple as a 2 x 
2 (Busack and Knudsen 2007). 

 
• Ryman-Laikre effect. On a per-capita basis, a hatchery broodstock fish can often 

contribute many more progeny to a naturally spawning population than a naturally 
spawning fish can contribute. This difference in reproductive contribution causes the 
composite Nb to be reduced, which is called a Ryman-Laikre (R-L) effect (Ryman and 
Laikre 1991; Ryman et al. 1995). The key factors determining the magnitude of the effect 
are the numbers of hatchery and natural spawners, and the proportion of natural spawners 
consisting of hatchery returnees. 

 
The initial papers on the R-L effect required knowledge of Nb in the two spawning components 
of the population. (Waples et al. 2016) have developed R-L equations suitable for a wide variety 
of situations in terms of knowledge base. A serious limitation of any R-L calculation however, is 
that it is a snapshot in time. What happens in subsequent generations depends on gene flow 
between the hatchery broodstock and the natural spawners. If a substantial portion of the 
broodstock are NO fish, the long-term effective size depression can be considerably less than 
would be expected from the calculated per-generation Nb. 
 
(Duchesne and Bernatchez 2002), (Tufto and Hindar 2003), and (Wang and Ryman 2001) have 
developed analytical approaches to deal with the effective-size consequences of multiple 
generations of interbreeding between HO and NO fish. One interesting result of these models is 
that effective size reductions caused by a hatchery program can easily be countered by low levels 
of gene flow from other populations. (Tufto 2017) recently provided us with R code (R Core 
Team 2019) updates to the (Tufto and Hindar 2003) method that yield identical answers to the 
(Duchesne and Bernatchez 2002) method, and we use an R (R Core Team 2019) program 
incorporating them to analyze the effects of hatchery programs on effective size.  
 
Inbreeding depression, another Ne-related phenomenon, is a reduction in fitness and survival 
caused by the mating of closely related individuals (e.g., siblings, half-siblings, cousins). Related 
individuals are genetically similar and produce offspring characterized by low genetic variation, 
low heterozygosity, lower survival, and increased expression of recessive deleterious mutations 
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(Frankham et al. 2010; Allendorf et al. 2013; Rollinson et al. 2014; Hedrick and Garcia-Dorado 
2016). Lowered fitness due to inbreeding depression exacerbates genetic risk relating to small 
population size and low genetic variation, which further shifts a small population toward 
extinction (Nonaka et al. 2019). The protective hatchery environment masks the effects of 
inbreeding, which becomes apparent when fish are released into the natural environment and 
experience decreased survival (Thrower and Hard 2009). Inbreeding concerns in salmonids 
related to hatcheries have been reviewed by (Wang et al. 2002) and (Naish et al. 2008a).  
 
Ne affects the level of inbreeding in a population, as the likelihood of matings between close 
relatives is increased in populations with low numbers of spawners. Populations exhibiting high 
levels of inbreeding are generally found to have low Ne (Dowell Beer et al. 2019). Small 
populations are at increased risk of both inbreeding depression and genetic drift (e.g., Willi et al. 
2006). Genetic drift is the stochastic loss of genetic variation, which is most often observed in 
populations with low numbers of breeders. Inbreeding exacerbates the loss of genetic variation 
by increasing genetic drift when related individuals with similar allelic diversity interbreed 
(Willoughby et al. 2015).  
 
Hatchery populations should be managed to avoid inbreeding depression. If hatcheries produce 
inbred fish that return to spawn in natural spawning areas the low genetic variation and increased 
deleterious mutations can lower the fitness, productivity, and survival of the natural population 
(Christie et al. 2014b). A captive population that has been managed so genetic variation is 
maximized and inbreeding is minimized may be used for a genetic rescue of a natural population 
characterized by low genetic variation and low Ne.  
 
5.2.1.2.2. Biased/nonrepresentational sampling 

Even if effective size is large, the genetic diversity of a population can be negatively affected by 
hatchery operations. Although many operations aspire to randomly use fish for spawning with 
respect to size, age, and other characteristics, this is difficult to do. For example, male Chinook 
salmon that mature precociously in freshwater are rarely if ever used as broodstock because they 
are not captured at hatchery weirs. Pressure to meet egg take goals is likely responsible for 
advancing run/spawn timing in at least some coho and Chinook salmon hatcheries (Quinn et al. 
2002; Ford et al. 2006). Ironically, random mating, a common spawning guideline for 
conservation of genetic diversity has been hypothesized to be effectively selecting for younger, 
smaller fish (Hankin et al. 2009). 
 
The sampling examples mentioned thus far are more or less unintentional actions. There are also 
established hatchery practices with possible diversity consequences that are clearly intentional. A 
classic example is use of jacks in spawning, where carefully considered guidelines range from 
random usage to near exclusion of jacks (e.g., Seidel 1983; IDFG et al. 2020). Another is the 
deliberate artificial selection in the hatchery of summer and winter steelhead to smolt at one year 
of age, which has resulted in early spawning stocks of both ecotypes (Crawford 1979).  

Another source of biased sampling is non-inclusion of precocious males in broodstock. 
Precociousness, or early male maturation, is an alternative reproductive tactic employed by 
Atlantic salmon (Bagliniere and Maisse 1985; Myers et al. 1986), Chinook salmon (Bernier et al. 
1993; Larsen et al. 2004), coho salmon (Iwamoto et al. 1964; Silverstein and Hershberger 1992), 
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steelhead (Schmidt and House 1979; McMillan et al. 2012) , sockeye salmon (Ricker 1959), as 
well as several salmonid species in Asia and Europe (Dellefors and Faremo 1988; Kato 1991; 
Munakata et al. 2001; Morita et al. 2009).  
 
Unlike anadromous males and females that migrate to the ocean to grow for a year or more 
before returning to their natal stream, precocious males generally stay in headwater reaches or 
migrate shorter distances downstream (Larsen et al. 2010) before spawning. They are orders of 
magnitude smaller than anadromous adults and use a ‘sneaker’ strategy to spawn with full size 
anadromous females (Fleming 1996). Precocious males are typically not subject to collection as 
broodstock, because of either size or location. Thus, to the extent this life history is genetically 
determined, hatchery programs culturing species that display precociousness unintentionally 
select against it. 
 
The examples above illustrate the overlap between diversity effects and selection. Selection, 
natural or artificial, affects diversity, so could be regarded as a subcategory of within-population 
diversity. Analytically, here we consider specific effects of sampling or selection on genetic 
diversity. Broodstock collection or spawning guidelines that include specifications about non-
random use of fish with respect to age or size, spawn timing, etc., (e.g., Crawford 1979) are of 
special interest. We consider general non-specific effects of unintentional selection due to the 
hatchery that are not related to individual traits in Section 5.2.1.4. 
 
5.2.1.3. Among-population diversity/ Outbreeding effects 

Outbreeding effects result from gene flow from other populations into the population of interest. 
Gene flow occurs naturally among salmon and steelhead populations, a process referred to as 
straying (Quinn 1997; Keefer and Caudill 2012; Westley et al. 2013). Natural straying serves a 
valuable function in preserving diversity that would otherwise be lost through genetic drift and in 
re-colonizing vacant habitat, and straying is considered a risk only when it occurs at unnatural 
levels or from unnatural sources.  
 
Hatchery fish may exhibit reduced homing fidelity relative to NO fish (Grant 1997; Quinn 1997; 
Jonsson et al. 2003; Goodman 2005), resulting in unnatural levels of gene flow into recipient 
populations from strays, either in terms of sources or rates. Based on thousands of coded-wire 
tag (CWT) recoveries, Westley et al. (2013) concluded that species propagated in hatcheries vary 
in terms of straying tendency: Chinook salmon > coho salmon > steelhead. Also, within Chinook 
salmon, “ocean-type” fish stray more than “stream-type” fish. However, even if hatchery fish 
home at the same level of fidelity as NO fish, their higher abundance relative to NO fish can 
cause unnaturally high gene flow into recipient populations.  
 
Rearing and release practices and ancestral origin of the hatchery fish can all play a role in 
straying (Quinn 1997). Based on fundamental population genetic principles, a 1995 scientific 
workgroup convened by NMFS concluded that aggregate gene flow from non-native HO fish 
from all programs combined should be kept below 5 percent (Grant 1997), and this is the 
recommendation NMFS uses as a reference in hatchery consultations. It is important to note that 
this 5% criterion was developed independently and for a different purpose than the HSRG’s 5% 
pHOS criterion that is presented in Section 5.2.1.4. 
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Gene flow from other populations can increase genetic diversity (e.g., Ayllon et al. 2006), which 
can be a benefit in small populations, but it can also alter established allele frequencies (and co-
adapted gene complexes) and reduce the population’s level of adaptation, a phenomenon called 
outbreeding depression (Edmands 2007; McClelland and Naish 2007). In general, the greater the 
geographic separation between the source or origin of hatchery fish and the recipient natural 
population, the greater the genetic difference between the two populations (ICTRT 2007), and 
the greater potential for outbreeding depression. For this reason, NMFS advises hatchery action 
agencies to develop locally derived hatchery broodstock.  
 
In addition, unusual high rates of straying into other populations within or beyond the 
population’s MPG, salmon ESU, or a steelhead DPS, can have a homogenizing effect, 
decreasing intra-population genetic variability (e.g., Vasemagi et al. 2005), and increasing risk to 
population diversity, one of the four attributes measured to determine population viability 
(McElhany et al. 2000). The practice of backfilling — using eggs collected at one hatchery to 
compensate for egg shortages at another—has historically a key source of intentional large-scale 
“straying”. Although it now is generally considered an unwise practice, it still is common. 
 
There is a growing appreciation of the extent to which among-population diversity contributes to 
a “portfolio” effect (Schindler et al. 2010), and lack of among-population genetic diversity is 
considered a contributing factor to the depressed status of California Chinook salmon 
populations (Carlson and Satterthwaite 2011; Satterthwaite and Carlson 2015). (Eldridge et al. 
2009) found that among-population genetic diversity had decreased in Puget Sound coho salmon 
populations during several decades of intensive hatchery culture. 
 
As discussed in Section 5.2.1.4, pHOS6 is often used as a surrogate measure of gene flow. 
Appropriate cautions and qualifications should be considered when using this proportion to 
analyze outbreeding effects.  
 

• Adult salmon may wander on their return migration, entering and then leaving tributary 
streams before spawning (Pastor 2004). These “dip-in” fish may be detected and counted 
as strays, but may eventually spawn in other areas, resulting in an overestimate of the 
number of strays that potentially interbreed with the natural population (Keefer et al. 
2008). On the other hand, “dip-ins” can also be captured by hatchery traps and become 
part of the broodstock. 
 

• Strays may not contribute genetically in proportion to their abundance. Several studies 
demonstrate little genetic impact from straying despite a considerable presence of strays 
in the spawning population (e.g., Saisa et al. 2003; Blankenship et al. 2007). The causes 
of poor reproductive success of strays are likely similar to those responsible for reduced 
productivity of HO fish in general, e.g., differences in run and spawn timing, spawning in 
less productive habitats, and reduced survival of their progeny (Reisenbichler and 
McIntyre 1977; Leider et al. 1990; Williamson et al. 2010). 

 
                                                 
6 It is important to reiterate that, as NMFS analyzes them, outbreeding effects are a risk only when the HO fish are 
from a different population than the NO fish.  
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5.2.1.4. Hatchery-influenced selection effects 

Hatchery-influenced selection (often called domestication7), the third major area of genetic 
effects of hatchery programs that NMFS analyses, occurs when selection pressures imposed by 
hatchery spawning and rearing differ greatly from those imposed by the natural environment and 
causes genetic change that is passed on to natural populations through interbreeding with HO 
fish. These differing selection pressures can be a result of differences in environments or a 
consequence of protocols and practices used by a hatchery program.  
 
Hatchery-influenced selection can range from relaxation of selection that would normally occur 
in nature, to selection for different characteristics in the hatchery and natural environments, to 
intentional selection for desired characteristics (Waples 1999), but in this section, for the most 
part, we consider hatchery-influenced selection effects that are general and unintentional. 
Concerns about these effects, often noted as performance differences between HO and NO fish 
have been recorded in the scientific literature for more than 60 years (Vincent 1960, and 
references therein). 
 
Genetic change and fitness reduction in natural salmon and steelhead due to hatchery-influenced 
selection depends on:  
 

• The difference in selection pressures presented by the hatchery and natural environments. 
Hatchery environments differ from natural environments in many ways (e.g., Thorpe 
2004). Some obvious ones are food, density, flows, environmental complexity, and 
protection from predation.  
 

• How long the fish are reared in the hatchery environment. This varies by species, program 
type, and by program objective. Steelhead, coho, and “stream-type” Chinook salmon are 
usually released as yearlings, while “ocean-type” Chinook, pink, and chum salmon are 
usually released at younger ages.  
 

• The rate of gene flow between HO and NO fish, which is usually expressed as pHOS for 
segregated programs and PNI for integrated programs.  

 
All three factors should be considered in evaluating risks of hatchery programs. However, 
because gene flow is generally more readily managed than the selection strength of the hatchery 
environment, current efforts to control and evaluate the risk of hatchery-influenced selection are 
                                                 
7 We prefer the term “hatchery-influenced selection” or “adaptation to captivity” (Fisch et al. 2015) to 
“domestication” because in discussions of genetic risk in salmon “domestication” is often taken as equivalence to 
species that have been under human management for thousands of years; e.g., perhaps 30,000 yrs for dogs (Larson 
and Fuller 2014), and show evidence of large-scale genetic change (e.g., Freedman et al. 2016). By this standard, the 
only domesticated fish species is the carp (Cyprinus carpio) (Larson and Fuller 2014). “Adaptation to captivity”, a 
term commonly used in conservation biology (e.g., Frankham 2008; Allendorf et al. 2013), and becoming more 
common in the fish literature (Christie et al. 2011; Fisch et al. 2015) is more precise for species that have been 
subjected to semi-captive rearing for a few decades. We feel “hatchery-influenced selection” is even more precise, 
and less subject to confusion. 
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currently largely focused on gene flow between NO and HO fish8. Strong selective fish culture 
with low hatchery-wild interbreeding can pose less risk than relatively weaker selective fish 
culture with high levels of interbreeding. 
 
5.2.1.4.1. Relative Reproductive Success Research 

Although hundreds of papers in the scientific literature document behavioral, morphological and 
physiological differences between NO and HO fish, the most frequently cited research has 
focused on RRS of HO fish compared to NO fish determined through pedigree analysis. The 
influence of this type of research derives from the fact that it addresses fitness, the ability of the 
fish to produce progeny that will then return to sustain the population. The RRS study method is 
simple: genotyped NO and HO fish are released upstream to spawn, and their progeny (juveniles, 
adults, or both) are sampled genetically and matched with the genotyped parents. In some cases, 
multiple-generation pedigrees are possible.  
 
RRS studies can be easy to misinterpret (Christie et al. 2014a) for at least three reasons:  
 

• RRS studies often have little experimental power because of limited sample sizes and 
enormous variation among individual fish in reproductive success (most fish leave no 
offspring and a few leave many). This can lead to lack of statistical significance for 
HO:NO comparisons even if a true difference does exist. (Kalinowski and Taper 2005) 
provide a method for developing confidence intervals around RRS estimates that can 
shed light on statistical power.  
 

• An observed difference in RRS may not be genetic. For example, (Williamson et al. 2010) 
found that much of the observed difference in reproductive success between HO and NO 
fish was due to spawning location; the HO fish tended to spawn closer to the hatchery. 
Genetic differences in reproductive success require a multiple generation design, and 
only a handful of these studies are available.  

 
• The history of the natural population in terms of hatchery ancestry can bias RRS results. 

Only a small difference in reproductive success of HO and NO fish might be expected if 
the population had been subjected to many generations of high pHOS (Willoughby and 
Christie 2017).  

 
For several years, the bulk of the empirical evidence of fitness depression due to hatchery-
influenced selection came from studies of species that are reared in the hatchery environment for 
an extended period— one to two years—before release (Berejikian and Ford 2004). Researchers 
and managers wondered if these results were applicable to species and life-history types with 
shorter hatchery residence, as it seemed reasonable that the selective effect of the hatchery 
environment would be less on species with shorter hatchery residence times (e.g., RIST 2009). 
                                                 
8 Gene flow between NO and HO fish is often interpreted as meaning actual matings between NO and HO fish. In 
some contexts, it can mean that. However, in this document, unless otherwise specified, gene flow means 
contributing to the same progeny population. For example, HO spawners in the wild will either spawn with other 
HO fish or with NO fish. NO spawners in the wild will either spawn with other NO fish or with HO fish. But all 
these matings, to the extent they are successful, will generate the next generation of NO fish. In other words, all will 
contribute to the NO gene pool.  
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Especially lacking was RRS information on “ocean-type” Chinook. Recent RRS work on 
Alaskan pink salmon, the species with the shortest hatchery residence time has found very large 
differences in reproductive success between HO and NO fish. The RRS was 0.42 for females and 
0.28 for males (Lescak et al. 2019). This research suggests the “less residence time, less effect” 
paradigm needs to be revisited. 
 
In addition to pink salmon, RRS results are now available for: 
 

• Coho salmon(Theriault et al. 2011) 
• Chum salmon (Berejikian et al. 2009) 
•  “Ocean-type” Chinook salmon (Anderson et al. 2012; Sard et al. 2015; Evans et al. 2019) 
• “Stream-type” Chinook salmon (Ford et al. 2009; Williamson et al. 2010; Ford et al. 2012; 

Hess et al. 2012; Ford et al. 2015; Janowitz‐Koch et al. 2018) 
• Steelhead (Araki et al. 2007; Araki et al. 2009; Berntson et al. 2011; Christie et al. 2011) 

 
Although the size of the effect may vary, and there may be year-to-year variation and lack of 
statistical significance, the general pattern is clear: HO fish have lower reproductive success than 
NO fish. 
 
As mentioned above, few studies have been designed to detect unambiguously a genetic 
component in RRS. Two such studies have been conducted with steelhead and both detected a 
statistically significant genetic component in steelhead (Araki et al. 2007; Christie et al. 2011; 
Ford et al. 2016), but the two conducted with “stream-type” Chinook salmon have not (Ford et 
al. 2012; Janowitz‐Koch et al. 2018).  
 
This suggests that perhaps the impacts of hatchery-influenced selection on fitness differs 
between Chinook salmon and steelhead.9 The possibility that steelhead may be more affected by 
hatchery-influenced selection than Chinook salmon by no means suggest that effects on Chinook 
are trivial, however. A small decrement in fitness per generation can lead to large fitness loss.  
 
5.2.1.4.2. Hatchery Scientific Review Group (HSRG) Guidelines 

Key concepts concerning the relationship of gene flow to hatchery-influenced selection were 
developed and promulgated throughout the Pacific Northwest by the Hatchery Scientific Review 
Group (HSRG). Because these concepts have been so influential, we devote the next few 
paragraphs to them. 
 
The HSRG developed gene-flow guidelines based on mathematical models developed by (Ford 
2002) and by (Lynch and O'Hely 2001). Guidelines for segregated programs are based on pHOS, 
but guidelines for integrated programs also include PNI, which is a function of pHOS and 
pNOB. PNI is, in theory, a reflection of the relative strength of selection in the hatchery and 
natural environments; a PNI value greater than 0.5 indicates dominance of natural selective 
forces.  
                                                 
9 This would not be surprising. Although steelhead are thought of as being quite similar to the “other” species of 
salmon, genetic evidence suggests the two groups diverged well over 10 million years ago (Crête-Lafrenière et al. 
2012). 
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The HSRG guidelines (HSRG 2009b) vary according to type of program and conservation 
importance of the population. The HSRG used conservation importance classifications that were 
developed by the Willamette/Lower Columbia Technical Recovery Team (McElhany et al. 
2003).10 (Table). In considering the guidelines, we equate “primary” with a recovery goal of 
“viable” or “highly viable”, and “contributing” with a recovery goal of “maintain”. We disregard 
the guidelines for “stabilizing”, because we feel they are inadequate for conservation guidance. 
 
Table 1. HSRG gene flow guidelines (HSRG 2009b). 
 Program classification 
Population conservation 
importance 

Integrated Segregated 

Primary  PNI > 0.67 and pHOS < 0.30 pHOS < 0.05 
Contributing PNI > 0.50 and pHOS < 0.30 pHOS < 0.10 
Stabilizing Existing conditions Existing conditions 

 
Although they are controversial, the HSRG gene flow guidelines have achieved a considerable 
level of regional acceptance. They were adopted as policy by the Washington Fish and Wildlife 
Commission (WDFW 2009), and were recently reviewed and endorsed by a WDFW scientific 
panel, who noted that the “…HSRG is the primary, perhaps only entity providing guidance for 
operating hatcheries in a scientifically defensible manner…” (Anderson et al. 2020). In addition, 
HSRG principles have been adopted by the Canadian Department of Fisheries and Oceans, with 
very similar gene-flow guidelines for some situations (Withler et al. 2018).  
 
The gene flow guidelines developed by the HSRG have been implemented in areas of the Pacific 
Northwest for at most 15 years, so there has been insufficient time to judge their effect. They 
have also not been applied consistently, which complicates evaluation. However, the benefits of 
high pNOB (in the following cases 100 percent) has been credited with limiting genetic change 
and fitness loss in supplemented Chinook populations in the Yakima (Washington) (Waters et al. 
2015) and Salmon (Idaho) (Hess et al. 2012; Janowitz‐Koch et al. 2018) basins.  
 
Little work toward developing guidelines beyond the HSRG work has taken place. The only 
notable effort along these lines has been the work of (Baskett and Waples 2013), who developed 
a model very similar to that of (Ford 2002), but added the ability to impose density-dependent 
survival and selection at different life stages. Their qualitative results were similar to Ford’s, but 
the model would require some revision to be used to develop guidelines comparable to the 
HSRG’s. 
 
NMFS has not adopted the HSRG gene flow guidelines per se. However, at present the HSRG 
guidelines, along with the 5% stray guideline from (Grant 1997) are the only acknowledged 
scientifically based quantitative guidelines for gene flow available. NMFS has considerable 
experience with the HSRG guidelines. They are based on a model (Ford 2002) developed by a 
NMFS geneticist, they have been evaluated by a NMFS-lead scientific team (RIST 2009), and 
                                                 
10 Development of conservation importance classifications varied among technical recovery teams (TRTs); for more 
information, documents produced by the individual TRT’s should be consulted.  
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NMFS scientists have extended the Ford model for more flexible application of the guidelines to 
complex situations (Busack 2015) (Section 5.2.1.4.3).  
 
At minimum, we consider the HSRG guidelines a useful screening tool. For a particular 
program, based on specifics of the program, broodstock composition, and environment, we may 
consider a pHOS or PNI level to be a lower risk than the HSRG would but, generally, if a 
program meets HSRG guidelines, we will typically consider the risk levels to be acceptable. 
However, our approach to application of HSRG concepts varies somewhat from what is found in 
HSRG documents or in typical application of HSRG concepts. Key aspects of our approach 
warrant discussion here.  

5.2.1.4.2.1. PNI and segregated hatchery programs 

The PNI concept has created considerable confusion. Because it is usually estimated by a simple 
equation that is applicable to integrated programs, and applied in HSRG guidelines only to 
integrated programs, PNI is typically considered to be a concept that is relevant only to 
integrated programs. This in turn has caused a false distinction between segregated and 
integrated programs in terms of perceptions of risk.  The simple equation for PNI is:  
 
PNI ≈ pNOB / (pNOB + pHOS).  
 
In a segregated program, pNOB equals zero, so by this equation PNI would also be zero. You 
could easily infer that PNI is zero in segregated programs, but this would be incorrect. The error 
comes from applying the equation to segregated programs. In integrated programs, PNI can be 
estimated accurately by the simple equation, and the simplicity of the equation makes it very 
easy to use. In segregated programs, however, a more complicated equation must be used to 
estimate PNI. A PNI equation applicable to both integrated and segregated programs was 
developed over a decade ago by the HSRG (HSRG 2009a, equation 9), but has been nearly 
completed ignored by parties dealing with the gene flow guidelines: 
 

2 2 2

2 2 2

(1.0 )*
(1.0 )*( )
h h pNOBPNI

h h pNOB pHOS
ω

ω
+ − +

≈
+ − + +

, 

 
where h2 is heritability and ω2 is the strength of selection in standard deviation units, squared. 
(Ford 2002) used a range of values for the latter two variables. Substituting those values that 
created the strongest selection scenarios in his simulations (h2 of 0.5 and ω2 of 10), which is 
appropriate for risk assessment, results in: 
 

0.5 10.5*
0.5 10.5*( )

pNOBPNI
pNOB pHOS

+
≈

+ +
 

 
(HSRG 2004b) offered additional guidance regarding isolated programs, stating that risk 
increases dramatically as the level of divergence increases, especially if the hatchery stock has 
been selected directly or indirectly for characteristics that differ from the natural population. 
More recently, the HSRG concluded that the guidelines for isolated programs may not provide as 
much protection from fitness loss as the corresponding guidelines for integrated programs 
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(HSRG 2014). This can be easily demonstrated using the equation presented in the previous 
paragraph: a pHOS of 0.05, the standard for a primary population affected by a segregated 
program, yields a PNI of 0.49, whereas a pHOS of 0.024 yields a PNI of 0.66, virtually the same 
as the standard for a primary population affected by an integrated program. 
 
5.2.1.4.2.2. The effective pHOS concept 

The HSRG recognized that HO fish spawning naturally may on average produce fewer adult 
progeny than NO spawners, as described above. To account for this difference, the (HSRG 2014) 
defined effective pHOS as: 
 
 pHOSeff = (RRS * HOScensus) / (NOS + RRS * HOScensus), 
 
where RRS is the reproductive success of HO fish relative to that of NO fish. They then 
recommend using this value in place of pHOScensus in PNI calculations. 
 
We feel that adjustment of census pHOS by RRS for this purpose should be done not nearly as 
freely as the HSRG document would suggest because the (Ford 2002) model, which is the 
foundation of the HSRG gene-flow guidelines, implicitly includes a genetic component of RRS. 
In that model, hatchery fish are expected to have RRS < 1 (compared to natural fish) due to 
selection in the hatchery. A component of reduced RRS of hatchery fish is therefore already 
incorporated in the model and by extension the calculation of PNI. Therefore, reducing pHOS 
values by multiplying by RRS will result in underestimating the relevant pHOS and therefore 
overestimating PNI. Such adjustments would be particularly inappropriate for hatchery programs 
with low pNOB, as these programs may well have a substantial reduction in RRS due to genetic 
factors already incorporated in the model.  
 
In some cases, adjusting pHOS downward may be appropriate, particularly if there is strong 
evidence of a non-genetic component to RRS. Wenatchee spring Chinook salmon (Williamson et 
al. 2010) is an example case with potentially justified adjustment by RRS, where the spatial 
distribution of NO and HO spawners differs, and the HO fish tend to spawn in poorer habitat. 
However, even in a situation like the Wenatchee spring Chinook salmon, it is unclear how much 
of an adjustment would be appropriate.  
 
By the same logic, it might also be appropriate to adjust pNOB in some circumstances. For 
example, if hatchery juveniles produced from NO broodstock tend to mature early and 
residualize (due to non-genetic effects of rearing), as has been documented in some spring 
Chinook salmon and steelhead programs, the “effective” pNOB might be much lower than the 
census pNOB.  
 
It is important to recognize that PNI is only an approximation of relative trait value, based on a 
model that is itself very simplistic. To the degree that PNI fails to capture important biological 
information, it would be better to work to include this biological information in the underlying 
models rather than make ad hoc adjustments to a statistic that was only intended to be a rough 
guideline to managers. We look forward to seeing this issue further clarified in the near future. In 
the meantime, except for cases in which an adjustment for RRS has strong justification, we feel 
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that census pHOS, rather than effective pHOS, is the appropriate metric to use for genetic risk 
evaluation. 
 
5.2.1.4.2.3. Gene flow guidelines in phases of recovery 

In 2012 the HSRG expanded on the original gene flow guidelines/standards by introducing the 
concept of recovery phases for natural populations (HSRG 2012), and then refined the concept in 
later documents (HSRG 2014; 2015; 2017). They defined and described four phases:  
 

1. Preservation  
2. Re-colonization  
3. Local adaptation  
4. Fully restored 

 
The HSRG provided guidance on development of quantitative “triggers” for determining when a 
population had moved (up or down) from one phase to another. As explained in (HSRG 2015), in 
the preservation and re-colonization phase, no PNI levels were specified for integrated programs 
(Table). The emphasis in these phases was to “Retain genetic diversity and identity of the 
existing population”. In the local adaptation phase, when PNI standards were to be applied, the 
emphasis shifted to “Increase fitness, reproductive success and life history diversity through 
local adaptation (e.g., by reducing hatchery influence by maximizing PNI)”. The HSRG provided 
additional guidance in (HSRG 2017), which encouraged managers to use pNOB to “…the extent 
possible…” during the preservation and recolonization phases. 
 
Table 2. HSRG gene flow guidelines/standards for conservation and harvest programs, 

based on recovery phase of impacted population (Table 2 from HSRG 2015). 

 
 
We agree that conservation of populations at perilously low abundance may require prioritization 
of demographic over genetic concerns, but is concerned that high pHOS/low PNI regimes 
imposed on small recovering populations may prevent them from advancing to higher recovery 
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phases11. A WDFW scientific panel reviewing HSRG principles and guidelines reached the same 
conclusion (Anderson et al. 2020).  
 
5.2.1.4.3. Extension of PNI modeling to more than two population components 

The Ford (2002) model considered a single population affected by a single hatchery program—
basically two population units connected by gene flow—but the recursion equations underlying 
the model are easily expanded to more than two populations (Busack 2015). This has resulted in 
tremendous flexibility in applying the PNI concept to hatchery consultations.  
 
A good example is a system of genetically linked hatchery programs, an integrated program in 
which returnees from a (typically smaller) integrated hatchery program are used as broodstock 
for a larger segregated program, and both programs contribute to pHOS (Error! Reference 
source not found.). It seems logical that this would result in less impact on the natural 
population than if the segregated program used only its own returnees as broodstock, but because 
the two-population implementation of the Ford model did not apply, there was no way to 
calculate PNI for this system.  
 
Extending Ford’s recursion equations (equations 5 and 6) to three populations allowed us to 
calculate PNI for a system of this type. We successfully applied this approach to link two spring 
Chinook salmon hatchery programs: Winthrop NFH (segregated) and Methow FH (integrated). 
By using some level of Methow returnees as broodstock for the Winthrop program, PNI for the 
natural population could be increased significantly12(Busack 2015). We have since used the 
multi-population PNI model in numerous hatchery program consultations in Puget Sound and the 
Columbia basin, and have extended to it to include as many as ten hatchery programs and natural 
production areas. 

 
                                                 
11 According to Andy Appleby, past HSRG co-chair, the HSRG never intended this guidance to be interpreted as 
total disregard for pHOS/PNI standards in the preservation and recovery phases (Appleby 2020). 
12 Such programs can lower the effective size of the system, but the model of Tufto (Section 5.2.1.3) can easily be 
applied to estimate this impact.  
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Figure 3 Example of genetically linked hatchery programs. The natural population is 
influenced by hatchery-origin spawners from an integrated (HOSI) and a segregated 
program (HOSS). The integrated program uses a mix of natural-origin (NOB) and 
its own returnees (HOBI) as broodstock, but the segregated uses returnees from the 
integrated program (HOBI above striped arrow) as all or part of its broodstock, 
genetically linking the two programs. The system illustrated here is functionally 
equivalent to the HSRG’s (HSRG 2014)“stepping stone” concept. 

 
5.2.1.4.4. California HSRG 

Another scientific team was assembled to review hatchery programs in California and this group 
developed guidelines that differed somewhat from those developed by the “Northwest” HSRG 
(California HSRG 2012). The California team: 
 

• Felt that truly isolated programs in which no HO returnees interact genetically with 
natural populations were impossible in California, and was “generally unsupportive” of 
the concept of segregated programs. However, if programs were to be managed as 
isolated, they recommend a pHOS of less than 5 percent.  
 

• Rejected development of overall pHOS guidelines for integrated programs because the 
optimal pHOS will depend upon multiple factors, such as “the amount of spawning by 
NO fish in areas integrated with the hatchery, the value of pNOB, the importance of the 
integrated population to the larger stock, the fitness differences between HO and NO 
fish, and societal values, such as angling opportunity.”  
 

• Recommended that program-specific plans be developed with corresponding population-
specific targets and thresholds for pHOS, pNOB, and PNI that reflect these factors. 
However, they did state that PNI should exceed 50 percent in most cases, although in 
supplementation or reintroduction programs the acceptable pHOS could be much higher 
than 5 percent, even approaching 100 percent at times.  

 
• Recommended for conservation programs that pNOB approach 100 percent, but pNOB 

levels should not be so high they pose demographic risk to the natural population by 
taking too large a proportion of the population for broodstock. 

  
5.2.2. Ecological effects 

Ecological effects for this factor (i.e., hatchery fish and the progeny of naturally spawning 
hatchery fish on the spawning grounds) refer to effects from competition for spawning sites and 
redd superimposition, contributions to marine-derived nutrients, and the removal of fine 
sediments from spawning gravels. Ecological effects on the spawning grounds may be positive 
or negative.  
 
To the extent that hatcheries contribute added fish to the ecosystem, there can be positive effects. 
For example, when anadromous salmonids return to spawn, hatchery-origin and natural-origin 
alike, they transport marine-derived nutrients stored in their bodies to freshwater and terrestrial 
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ecosystems. Their carcasses provide a direct food source for juvenile salmonids and other fish, 
aquatic invertebrates, and terrestrial animals, and their decomposition supplies nutrients that may 
increase primary and secondary production (Kline et al. 1990; Piorkowski 1995; Larkin and 
Slaney 1996; Gresh et al. 2000; Murota 2003; Quamme and Slaney 2003; Wipfli et al. 2003). As 
a result, the growth and survival of juvenile salmonids may increase (Hager and Noble 1976; 
Bilton et al. 1982; Holtby 1988; Ward and Slaney 1988; Hartman and Scrivener 1990; Johnston 
et al. 1990; Larkin and Slaney 1996; Quinn and Peterson 1996; Bradford et al. 2000; Bell 2001; 
Brakensiek 2002). 
 
Additionally, studies have demonstrated that perturbation of spawning gravels by spawning 
salmonids loosens cemented (compacted) gravel areas used by spawning salmon (e.g., 
(Montgomery et al. 1996). The act of spawning also coarsens gravel in spawning reaches, 
removing fine material that blocks interstitial gravel flow and reduces the survival of incubating 
eggs in egg pockets of redds. 
 
The added spawner density resulting from hatchery-origin fish spawning in the wild can have 
negative consequences, such as increased competition, and potential for redd superimposition. 
Although males compete for access to females, female spawners compete for spawning sites. 
(Essington et al. 2000) found that aggression of both sexes increases with spawner density, and is 
most intense with conspecifics. However, females tended to act aggressively towards 
heterospecifics as well. In particular, when there is spatial overlap between natural-and hatchery-
origin spawners, the potential exists for hatchery-derived fish to superimpose or destroy the eggs 
and embryos of ESA-listed species. Redd superimposition has been shown to be a cause of egg 
loss in pink salmon and other species (e.g., Fukushima et al. 1998).  
 
5.2.3. Adult Collection Facilities 

The analysis also considers the effects from encounters with natural-origin fish that are 
incidental to broodstock collection. Here, NMFS analyzes effects from sorting, holding, and 
handling natural-origin fish in the course of broodstock collection. Some programs collect their 
broodstock from fish voluntarily entering the hatchery, typically into a ladder and holding pond, 
while others sort through the run at large, usually at a weir, ladder, or sampling facility. The 
more a hatchery program accesses the run at large for hatchery broodstock – that is, the more fish 
that are handled or delayed during migration – the greater the negative effect on natural- and 
hatchery-origin fish that are intended to spawn naturally and on ESA-listed species. The 
information NMFS uses for this analysis includes a description of the facilities, practices, and 
protocols for collecting broodstock, the environmental conditions under which broodstock 
collection is conducted, and the encounter rate for ESA-listed fish. 
 
NMFS also analyzes the effects of structures, either temporary or permanent, that are used to 
collect hatchery broodstock, and remove hatchery fish from the river or stream and prevent them 
from spawning naturally, on juvenile and adult fish from encounters with these structures. NMFS 
determines through the analysis, for example, whether the spatial structure, productivity, or 
abundance of a natural population is affected when fish encounter a structure used for broodstock 
collection, usually a weir or ladder. 
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5.3. Factor 3. Hatchery fish and the progeny of naturally spawning hatchery fish in 
juvenile rearing areas, the migratory corridor, estuary, and ocean (Revised June 1, 
2020) 

NMFS also analyzes the potential for competition, predation, and disease when the progeny of 
naturally spawning hatchery fish and hatchery releases share juvenile rearing areas.  
 
5.3.1. Competition 

Competition and a corresponding reduction in productivity and survival may result from direct or 
indirect interactions. Direct interactions occur when hatchery-origin fish interfere with the 
accessibility to limited resources by natural-origin fish, and indirect interactions occur when the 
utilization of a limited resource by hatchery fish reduces the amount available for fish from the 
natural population (Rensel et al. 1984). Natural-origin fish may be competitively displaced by 
hatchery fish early in life, especially when hatchery fish are more numerous, are of equal or 
greater size, take up residency before natural-origin fry emerge from redds, and residualize. 
Hatchery fish might alter natural-origin salmon behavioral patterns and habitat use, making 
natural-origin fish more susceptible to predators (Hillman and Mullan 1989; Steward and Bjornn 
1990). Hatchery-origin fish may also alter natural-origin salmonid migratory responses or 
movement patterns, leading to a decrease in foraging success by the natural-origin fish (Hillman 
and Mullan 1989; Steward and Bjornn 1990). Actual impacts on natural-origin fish would thus 
depend on the degree of dietary overlap, food availability, size-related differences in prey 
selection, foraging tactics, and differences in microhabitat use (Steward and Bjornn 1990). 
 
Several studies suggest that salmonid species and migratory forms that spend longer periods of 
time in lotic habitats (e.g., coho salmon and steelhead) are more aggressive than those that 
outmigrate at an earlier stage (Hutchison and Iwata 1997). The three least aggressive species 
generally outmigrate to marine (chum salmon) or lake (kokanee and sockeye salmon) habitats as 
post-emergent fry. The remaining (i.e., more aggressive) species all spend one year or more in 
stream habitats before outmigrating. Similarly, (Hoar 1951) did not observe aggression or 
territoriality in fry of early migrants (chum and pink salmon), in contrast to fry of a later 
migrating species (coho salmon), which displayed high levels of each. (Hoar 1954) rarely 
observed aggression in sockeye salmon fry, and observed considerably less aggression in 
sockeye than coho salmon smolts. (Taylor 1990) found that Chinook salmon populations that 
outmigrate as fry are less aggressive than those that outmigrate as parr, which are less aggressive 
than those that outmigrate as yearlings. 
 
Although intraspecific interactions are expected to be more frequent/intense than interspecific 
interactions (e.g., Hartman 1965; Tatara and Berejikian 2012), this apparent relationship between 
aggression and stream residence appears to apply to interspecific interactions as well. For 
example, juvenile coho salmon are known to be highly aggressive toward other species (e.g., 
Stein et al. 1972; Taylor 1991). (Taylor 1991) found that coho salmon were much more 
aggressive toward size-matched ocean-type Chinook salmon (early outmigrants), but only 
moderately more aggressive toward size-matched stream-type Chinook salmon (later 
outmigrants). Similarly, the findings of (Hasegawa et al. 2014) indicate that masu salmon (O. 
masou), which spend 1 to 2 years in streams before outmigrating, dominate and outcompete the 
early-migrating chum salmon. 
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A few exceptions to this general stream residence-aggression pattern have been observed (e.g., 
Lahti et al. 2001; Young 2003; Hasegawa et al. 2004; Young 2004), but all the species and 
migratory forms evaluated in these studies spend one year or more in stream habitat prior to 
outmigrating. Other than the (Taylor 1991) and (Hasegawa et al. 2014) papers noted above, we 
are not aware of any other studies that have looked specifically at interspecific interactions 
between early-outmigrating species (e.g., sockeye, chum, and pink salmon) and those that rear 
longer in streams. 
 
En masse hatchery salmon and steelhead smolt releases may cause displacement of rearing 
natural-origin juvenile salmonids from occupied stream areas, leading to abandonment of 
advantageous feeding stations, or to premature out-migration by natural-origin juveniles. 
(Pearsons et al. 1994) reported small-scale displacement of naturally produced juvenile rainbow 
trout from stream sections by hatchery steelhead. Small-scale displacements and agonistic 
interactions observed between hatchery steelhead and natural-origin juvenile trout were most 
likely a result of size differences and not something inherently different about hatchery fish. 
 
A proportion of the smolts released from a hatchery may not migrate to the ocean but rather 
reside for a time near the release point. These non-migratory smolts (residuals) may compete for 
food and space with natural-origin juvenile salmonids of similar age (Bachman 1984; Tatara and 
Berejikian 2012). Although this behavior has been studied and observed, most frequently in the 
case of hatchery steelhead, residualism has been reported as a potential issue for hatchery coho 
and Chinook salmon as well (Parkinson et al. 2017). Adverse impacts of residual hatchery 
Chinook and coho salmon on natural-origin salmonids can occur, especially given that the 
number of smolts per release is generally higher; however, the issue of residualism for these 
species has not been as widely investigated compared to steelhead. Therefore, for all species, 
monitoring of natural stream areas near hatchery release points may be necessary to determine 
the potential effects of hatchery smolt residualism on natural-origin juvenile salmonids. 
 
The risk of adverse competitive interactions between hatchery- and natural-origin fish can be 
minimized by: 
 

• Releasing hatchery smolts that are physiologically ready to migrate. Hatchery fish 
released as smolts emigrate seaward soon after liberation, minimizing the potential for 
competition with juvenile natural-origin fish in freshwater (Steward and Bjornn 1990; 
California HSRG 2012) 

• Rearing hatchery fish to a size sufficient to ensure that smoltification occurs  
• Releasing hatchery smolts in lower river areas, below areas used for stream-rearing by 

natural-origin juveniles 
• Monitoring the incidence of non-migratory smolts (residuals) after release and adjusting 

rearing strategies, release location, and release timing if substantial competition with 
natural-origin juveniles is likely 
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Critical to analyzing competition risk is information on the quality and quantity of spawning and 
rearing habitat in the action area,13 including the distribution of spawning and rearing habitat by 
quality and best estimates for spawning and rearing habitat capacity. Additional important 
information includes the abundance, distribution, and timing for naturally spawning hatchery fish 
and natural-origin fish; the timing of emergence; the distribution and estimated abundance for 
progeny from both hatchery and natural-origin natural spawners; the abundance, size, 
distribution, and timing for juvenile hatchery fish in the action area; and the size of hatchery fish 
relative to co-occurring natural-origin fish. 
 
5.3.2. Predation 

Another potential ecological effect of hatchery releases is predation. Salmon and steelhead are 
piscivorous and can prey on other salmon and steelhead. Predation, either direct (consumption by 
hatchery fish) or indirect (increases in predation by other predator species due to enhanced 
attraction), can result from hatchery fish released into the wild. Considered here is predation by 
hatchery-origin fish, the progeny of naturally spawning hatchery fish, and avian and other 
predators attracted to the area by an abundance of hatchery fish.  
 
Hatchery fish originating from egg boxes and fish planted as non-migrant fry or fingerlings can 
prey upon fish from the local natural population during juvenile rearing. Hatchery fish released 
at a later stage, so they are more likely to migrate quickly to the ocean, can prey on fry and 
fingerlings that are encountered during the downstream migration. Some of these hatchery fish 
do not emigrate and instead take up residence in the stream where they can prey on stream-
rearing juveniles over a more prolonged period, as discussed above. The progeny of naturally 
spawning hatchery fish also can prey on fish from a natural population and pose a threat.  
 
Predation may be greatest when large numbers of hatchery smolts encounter newly emerged fry 
or fingerlings, or when hatchery fish are large relative to natural-origin fish (Rensel et al. 1984). 
Due to their location in the stream, size, and time of emergence, newly emerged salmonid fry are 
likely to be the most vulnerable to predation. Their vulnerability is believed to be greatest 
immediately upon emergence from the gravel and then their vulnerability decreases as they move 
into shallow, shoreline areas (USFWS 1994). Emigration out of important rearing areas and 
foraging inefficiency of newly released hatchery smolts may reduce the degree of predation on 
salmonid fry (USFWS 1994). 
 
Some reports suggest that hatchery fish can prey on fish that are up to 1/2 their length (Pearsons 
and Fritts 1999; HSRG 2004b), but other studies have concluded that salmonid predators prey on 
fish up to 1/3 their length (Horner 1978; Hillman and Mullan 1989; Beauchamp 1990; 
Cannamela 1992; CBFWA 1996; Daly et al. 2009). Hatchery fish may also be less efficient 
predators as compared to their natural-origin conspecifics, reducing the potential for predation 
impacts (Sosiak et al. 1979; Bachman 1984; Olla et al. 1998).  
 
Size is an important determinant of how piscivorous hatchery-origin fish are. (Keeley and Grant 
2001) reviewed 93 reports detailing the relationship between size and piscivory in 17 species of 
                                                 
13 “Action area,” in ESA section 7 analysis documents, means all areas to be affected directly or indirectly by the 

action in which the effects of the action can be meaningfully detected and evaluated.  
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stream-dwelling salmonids. O. mykiss and Pacific salmon were well represented in the reviewed 
reports. Although there is some variation between species, stream-dwelling salmonids become 
piscivorous at about 100 mm FL, and then piscivory rate increases with increasing size. For 
example:  

• For 140 mm fish, 15% would be expected to have fish in their diet but would not be 
primarily piscivorous; 2% would be expected to be primarily piscivorous (> 60% fish in 
diet). 

• For 200 mm fish, those figures go to 32% (fish in diet) and 11% (primarily piscivorous). 

The implication for hatchery-origin fish is pretty clear: larger hatchery-origin fish present a 
greater predation risk because more of them eat fish, and more of them eat primarily fish. 
 
There are several steps that hatchery programs can implement to reduce or avoid the threat of 
predation: 
 

• Ensuring that a high proportion of the hatchery fish have physiologically achieved full 
smolt status. Juvenile salmon tend to migrate seaward rapidly when fully smolted, 
limiting the duration of interaction between hatchery- and natural-origin fish present 
within, and downstream of, release areas. 

• Releasing hatchery smolts in lower river areas near river mouths and below upstream 
areas used for stream-rearing young-of-the-year naturally produced salmon fry, thereby 
reducing the likelihood for interaction between the hatchery and naturally produced fish. 

• Operating hatchery programs to minimize the potential for residualism. 
 
5.3.3. Disease 

The release of hatchery fish and hatchery effluent into juvenile rearing areas can lead to 
transmission of pathogens, contact with chemicals or altering of environmental parameters (e.g., 
dissolved oxygen) that can result in disease outbreaks. Fish diseases can be subdivided into two 
main categories: infectious and non-infectious. Infectious diseases are those caused by pathogens 
such as viruses, bacteria, and parasites. Noninfectious diseases are those that cannot be 
transmitted between fish and are typically caused by genetic or environmental factors (e.g., low 
dissolved oxygen). Pathogens can also be categorized as exotic or endemic. For our purposes, 
exotic pathogens are those that have little to no history of occurrence within state boundaries. For 
example, Oncorhynchus masou virus (OMV) would be considered an exotic pathogen if 
identified anywhere in Washington state. Endemic pathogens are native to a state, but may not be 
present in all watersheds.  
 
In natural fish populations, the risk of disease associated with hatchery programs may increase 
through a variety of mechanisms (Naish et al. 2008a), including: 

• Introduction of exotic pathogens 
• Introduction of endemic pathogens to a new watershed 
• Intentional release of infected fish or fish carcasses 
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• Continual pathogen reservoir 
• Pathogen amplification 

 
The transmission of pathogens between hatchery and natural fish can occur indirectly through 
hatchery water influent/effluent or directly via contact with infected fish. Within a hatchery, the 
likelihood of transmission leading to an epizootic (i.e., disease outbreak) is increased compared 
to the natural environment because hatchery fish are reared at higher densities and closer 
proximity than would naturally occur. During an epizootic, hatchery fish can shed relatively 
large amounts of pathogen into the hatchery effluent and ultimately, the environment, amplifying 
pathogen numbers. However, few, if any, examples of hatcheries contributing to an increase in 
disease in natural populations have been reported (Steward and Bjornn 1990; Naish et al. 2008a). 
This lack of reporting is because both hatchery and natural-origin salmon and trout are 
susceptible to the same pathogens (Noakes et al. 2000), which are often endemic and ubiquitous 
(e.g., Renibacterium salmoninarum, the cause of Bacterial Kidney Disease).  
 
Adherence to a number of state, federal, and tribal fish health policies limits the disease risks 
associated with hatchery programs (IHOT 1995; ODFW 2003; USFWS 2004; WWTIT and 
WDFW 2006). Specifically, the policies govern the transfer of fish, eggs, carcasses, and water to 
prevent the spread of exotic and endemic reportable pathogens. For all pathogens, both 
reportable and non-reportable, pathogen spread and amplification are minimized through regular 
monitoring (typically monthly) removing mortalities, and disinfecting all eggs. Vaccines may 
provide additional protection from certain pathogens when available (e.g., Vibrio anguillarum). 
If a pathogen is determined to be the cause of fish mortality, treatments (e.g., antibiotics) will be 
used to limit further pathogen transmission and amplification. Some pathogens, such as 
infectious hematopoietic necrosis virus (IHNV), have no known treatment. Thus, if an epizootic 
occurs for those pathogens, the only way to control pathogen amplification is to cull infected 
individuals or terminate all susceptible fish. In addition, current hatchery operations often rear 
hatchery fish on a timeline that mimics their natural life history, which limits the presence of fish 
susceptible to pathogen infection and prevents hatchery fish from becoming a pathogen reservoir 
when no natural fish hosts are present. 
 
In addition to the state, federal, and tribal fish health policies, disease risks can be further 
minimized by preventing pathogens from entering the hatchery facility through the treatment of 
incoming water (e.g., by using ozone) or by leaving the hatchery through hatchery effluent 
(Naish et al. 2008a). Although preventing the exposure of fish to any pathogens prior to their 
release into the natural environment may make the hatchery fish more susceptible to infection 
after release into the natural environment, reduced fish densities in the natural environment 
compared to hatcheries likely reduces the risk of fish encountering pathogens at infectious levels 
(Naish et al. 2008a).  
 
Treating the hatchery effluent would also minimize amplification, but would not reduce disease 
outbreaks within the hatchery itself caused by pathogens present in the incoming water supply. 
Another challenge with treating hatchery effluent is the lack of reliable, standardized guidelines 
for testing or a consistent practice of controlling pathogens in effluent (LaPatra 2003). However, 
hatchery facilities located near marine waters likely limit freshwater pathogen amplification 
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downstream of the hatchery without human intervention because the pathogens are killed before 
transmission to fish when the effluent mixes with saltwater.  
 
Noninfectious diseases are those that cannot be transmitted between fish and are typically caused 
by genetic or environmental factors (e.g., low dissolved oxygen). Hatchery facilities routinely 
use a variety of chemicals for treatment and sanitation purposes. Chlorine levels in the hatchery 
effluent, specifically, are monitored with a National Pollutant Discharge Elimination System 
(NPDES) permit administered by the Environmental Protection Agency. Other chemicals are 
discharged in accordance with manufacturer instructions. The NPDES permit also requires 
monitoring of settleable and unsettleable solids, temperature, and dissolved oxygen in the 
hatchery effluent on a regular basis to ensure compliance with environmental standards and to 
prevent fish mortality.  
 
In contrast to infectious diseases, which typically are manifest by a limited number of life stages 
and over a protracted time period, non-infectious diseases caused by environmental factors 
typically affect all life stages of fish indiscriminately and over a relatively short period of time. 
One group of non-infectious diseases that are expected to occur rarely in current hatchery 
operations are those caused by nutritional deficiencies because of the vast literature available on 
successful rearing of salmon and trout in aquaculture. 
 
5.3.4. Ecological Modeling 

While competition, predation, and disease are important effects to consider, they are events that 
can rarely, if ever, be observed and directly calculated. However, these behaviors have been 
established to the point where NMFS can model these potential effects on the species based on 
known factors that lead to competition or predation occurring. In our Biological Opinions, we 
use the Predation, Competition, Decrement (PCD) Risk model version 3.2 based on (Pearsons 
and Busack 2012). PCD Risk is an individual-based model that simulates the potential number of 
ESA-listed natural-origin juveniles lost to competition, predation, and disease from the release of 
hatchery-origin juveniles in the freshwater environment.  
 
The PCD Risk model has undergone considerable modification since 2012 to increase 
supportability and reliability. Notably, the current version no longer operates in a Windows 
environment and no longer has a probabilistic mode. We also further refined the model by 
allowing for multiple hatchery release groups of the same species to be included in a single run.  
 
There have also been a few recent modifications to the logic of the model. The first was the 
elimination of competition equivalents and replacement of the disease function with a delayed 
mortality parameter. The rationale behind this change was to make the model more realistic; 
competition rarely directly results in death in the model because it takes many competitive 
interactions to suffer enough weight loss to kill a fish. Weight loss is how adverse competitive 
interactions are captured in the model. However, fish that are competed with and suffer some 
degree of weight loss are likely more vulnerable to mortality from other factors such as disease. 
Now, at the end of each run, the competitive impacts for each fish are assessed, and the fish has a 
probability of delayed mortality based on the competitive impacts. This function will be subject 
to refinement based on research. For now, the probability of delayed mortality is equal to the 
proportion of a fish’s weight loss. For example, if a fish has lost 10% of its body weight due to 
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competition and a 50% weight loss kills a fish, then it has a 20% probability of delayed death, 
(0.2 = 0.1/0.5).  
 
The second logic change was to the habitat segregation parameter to make it size-independent or 
size-dependent based on hatchery species. Some species, such as coho salmon, are more 
aggressive competitors than other species, such as chum and sockeye salmon. To represent this 
difference in behavior more accurately in the model, for less aggressive species such as chum 
and sockeye salmon, hatchery fish segregation is random, whereas for more aggressive species, 
segregation occurs based on size, with the largest fish eliminated from the model preferentially.  
 
5.3.5. Acclimation 

One factor that can affect hatchery fish distribution and the potential to spatially overlap with 
natural-origin spawners, and thus the potential for genetic and ecological impacts, is the 
acclimation (the process of allowing fish to adjust to the environment in which they will be 
released) of hatchery juveniles before release. Acclimation of hatchery juveniles before release 
increases the probability that hatchery adults will home back to the release location, reducing 
their potential to stray into natural spawning areas.  
 
Acclimating fish for a time also allows them to recover from the stress caused by the 
transportation of the fish to the release location and by handling. (Dittman and Quinn 2008) 
provide an extensive literature review and introduction to homing of Pacific salmon. They note 
that, as early as the 19th century, marking studies had shown that salmonids would home to the 
stream, or even the specific reach, where they originated. The ability to home to their home or 
“natal” stream is thought to be due to odors to which the juvenile salmonids were exposed while 
living in the stream (olfactory imprinting) and migrating from it years earlier (Dittman and 
Quinn 2008; Keefer and Caudill 2014). Fisheries managers use this innate ability of salmon and 
steelhead to home to specific streams by using acclimation ponds to support the reintroduction of 
species into newly accessible habitat or into areas where they have been extirpated (Quinn 1997; 
Dunnigan 1999; YKFP 2008). 
 
(Dittman and Quinn 2008) reference numerous experiments that indicated that a critical period 
for olfactory imprinting is during the parr-smolt transformation, which is the period when the 
salmonids go through changes in physiology, morphology, and behavior in preparation for 
transitioning from fresh water to the ocean (Hoar 1976; Beckman et al. 2000). Salmon species 
with more complex life histories (e.g., sockeye salmon) may imprint at multiple times from 
emergence to early migration (Dittman et al. 2010). Imprinting to a particular location, be it the 
hatchery, or an acclimation pond, through the acclimation and release of hatchery salmon and 
steelhead is employed by fisheries managers with the goal that the hatchery fish released from 
these locations will return to that particular site and not stray into other areas (Fulton and Pearson 
1981; Quinn 1997; Hard and Heard 1999; Bentzen et al. 2001; Kostow 2009; Westley et al. 
2013). However, this strategy may result in varying levels of success in regards to the proportion 
of the returning fish that stray outside of their natal stream. (e.g., (Kenaston et al. 2001; Clarke et 
al. 2011).  
 
Increasing the likelihood that hatchery salmon and steelhead home to a particular location is one 
measure that can be taken to reduce the proportion of hatchery fish in the naturally spawning 
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population. When the hatchery fish home to a particular location, those fish can be removed 
(e.g., through fisheries, use of a weir) or they can be isolated from primary spawning areas. 
Factors that can affect the success of acclimation as a tool to improve homing include:  

• The timing of acclimation, such that a majority of the hatchery juveniles are going 
through the parr-smolt transformation during acclimation 

• A water source unique enough to attract returning adults 
• Whether or not the hatchery fish can access the stream reach where they were released 
• Whether or not the water quantity and quality is such that returning hatchery fish will 

hold in that area before removal and/or their harvest in fisheries. 
 
5.4. Factor 4. Research, monitoring, and evaluation that exists because of the hatchery 

program 

NMFS also analyzes proposed RM&E for its effects on listed species and on designated critical 
habitat. Negative effects on the fish from RM&E are weighed against the value or benefit of new 
information, particularly information that tests key assumptions and that reduces uncertainty. 
RM&E actions can cause harmful changes in behavior and reduced survival; such actions 
include, but are not limited to: 

• Observation during surveying 
• Collecting and handling (purposeful or inadvertent) 
• Sampling (e.g., the removal of scales and tissues) 
• Tagging and fin-clipping, and observing the fish (in-water or from the bank) 

 
NMFS also considers the overall effectiveness of the RM&E program. There are five factors that 
NMFS takes into account when it assesses the beneficial and negative effects of hatchery 
RM&E: (1) the status of the affected species and effects of the proposed RM&E on the species 
and on designated critical habitat, (2) critical uncertainties concerning effects on the species, (3) 
performance monitoring and determining the effectiveness of the hatchery program at achieving 
its goals and objectives, (4) identifying and quantifying collateral effects, and (5) tracking 
compliance of the hatchery program with the terms and conditions for implementing the 
program. After assessing the proposed hatchery RM&E, and before it makes any 
recommendations to the action agency(s) NMFS considers the benefit or usefulness of new or 
additional information, whether the desired information is available from another source, the 
effects on ESA-listed species, and cost. 
 
5.4.1. Observing/Harassing 

For some activities, listed fish would be observed in-water (e.g., by snorkel surveys, wading 
surveys, or observation from the banks). Direct observation is the least disruptive method for 
determining a species’ presence/absence and estimating their relative numbers. Its effects are 
also generally the shortest-lived and least harmful of the research activities discussed in this 
section because a cautious observer can effectively obtain data while only slightly disrupting 
fishes’ behavior.  
 
Fish frightened by the turbulence and sound created by observers are likely to seek temporary 
refuge in deeper water, or behind/under rocks or vegetation. In extreme cases, some individuals 
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may leave a particular pool or habitat type and then return when observers leave the area. These 
avoidance behaviors are expected to be in the range of normal predator and disturbance 
behaviors. 
 
5.4.2. Capturing/handling 

Any physical handling or psychological disturbance is known to be stressful to fish (Sharpe et al. 
1998). Primary contributing factors to stress and death from handling are excessive doses of 
anesthetic, differences in water temperatures (between the river and holding vessel), dissolved 
oxygen conditions, the amount of time fish are held out of the water, and physical trauma. Stress 
increases rapidly if the water temperature exceeds 18ºC or dissolved oxygen is below saturation. 
Fish transferred to holding tanks can experience trauma if care is not taken in the transfer 
process, and fish can experience stress and injury from overcrowding in traps if the traps are not 
emptied regularly. Decreased survival can result from high stress levels, and may also increase 
the potential for vulnerability to subsequent challenges (Sharpe et al. 1998). 
 
 NMFS has developed general guidelines to reduce impacts when collecting listed adult and 
juvenile salmonids (NMFS 2000; NOAA 2008) that have been incorporated as terms and 
conditions into section 7 opinions and section 10 permits for research and enhancement. 
Additional monitoring principles for supplementation programs have been developed by the 
(Galbreath et al. 2008). 

5.4.3. Fin clipping and tagging 

Many studies have examined the effects of fin clips on fish growth, survival, and behavior. The 
results of these studies are somewhat varied, but fin clips do not generally alter fish growth 
(Brynildson and Brynildson 1967; Gjerde and Refstie 1988). Mortality among fin-clipped fish is 
variable, but can be as high as 80 percent (Nicola and Cordone 1973). In some cases, though, no 
significant difference in mortality was found between clipped and un-clipped fish (Gjerde and 
Refstie 1988; Vincent-Lang 1993). The mortality rate typically depends on which fin is clipped. 
Recovery rates are generally higher for adipose- and pelvic-fin-clipped fish than for those that 
have clipped pectoral, dorsal, or anal fins (Nicola and Cordone 1973), probably because the 
adipose and pelvic fins are not as important as other fins for movement or balance (McNeil and 
Crossman 1979). However, some work has shown that fish without an adipose fin may have a 
more difficult time swimming through turbulent water (Reimchen and Temple 2003; Buckland-
Nicks et al. 2011). 
 
In addition to fin clipping, PIT tags and CWTs are additional ways available to differentially 
mark fish. PIT tags are inserted into the body cavity of the fish just in front of the pelvic girdle. 
The tagging procedure requires that the fish be captured and extensively handled. Thus, tagging 
needs to take place where there is cold water of high quality, a carefully controlled environment 
for administering anesthesia, sanitary conditions, quality control checking, and a recovery tank.  
 
Most studies have concluded that PIT tags generally have very little effect on growth, mortality, 
or behavior. Early studies of PIT tags showed no long-term effect on growth or survival (Prentice 
and Park 1984; Prentice et al. 1987; Rondorf and Miller 1994). In a study between the tailraces 
of Lower Granite and McNary Dams (225 km), (Hockersmith et al. 2000) concluded that the 
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performance of yearling Chinook salmon was not adversely affected by orally or surgically 
implanted sham radio tags or PIT tags. However, (Knudsen et al. 2009) found that, over several 
brood years, PIT tag induced smolt-adult mortality in Yakima River spring Chinook salmon 
averaged 10.3 percent and was at times as high as 33.3 percent. 
 
Coded-wire tags are made of magnetized, stainless-steel wire and are injected into the nasal 
cartilage of a salmon and thus cause little direct tissue damage (Bergman et al. 1968; Bordner et 
al. 1990). The conditions under which CWTs should be inserted are similar to those required for 
PIT tags. A major advantage to using CWTs is that they have a negligible effect on the biological 
condition or response of tagged salmon (Vander Haegen et al. 2005); however, if the tag is 
placed too deeply in the snout of a fish, it may kill the fish, reduce its growth, or damage 
olfactory tissue (Fletcher et al. 1987; Peltz and Miller 1990). This latter effect can create 
problems for species like salmon because they use olfactory clues to guide their spawning 
migrations (Morrison and Zajac 1987).  
 
Mortality from tagging is both acute (occurring during or soon after tagging) and delayed 
(occurring long after the fish have been released into the environment). Acute mortality is caused 
by trauma induced during capture, tagging, and release—it can be reduced by handling fish as 
gently as possible. Delayed mortality occurs if the tag or the tagging procedure harms the animal. 
Tags may cause wounds that do not heal properly, may make swimming more difficult, or may 
make tagged animals more vulnerable to predation (Howe and Hoyt 1982; Matthews and Reavis 
1990; Moring 1990). Tagging may also reduce fish growth by increasing the energetic costs of 
swimming and maintaining balance.  
 
5.4.4. Masking  

Hatchery actions also must be assessed for risk caused by masking effects, defined as when 
hatchery fish included in the Proposed Action are not distinguishable from other fish. Masking 
undermines and confuses RM&E, and status and trends monitoring. Both adult and juvenile 
hatchery fish can have masking effects. When presented with a proposed hatchery action, NMFS 
analyzes the nature and level of uncertainties caused by masking, and whether and to what extent 
listed salmon and steelhead are at increased risk as a result of misidentification in status 
evaluations. The analysis also takes into account the role of the affected salmon and steelhead 
population(s) in recovery and whether unidentifiable hatchery fish compromise important 
RM&E. 
 
5.5. Factor 5. Construction, operation, and maintenance, of facilities that exist because 

of the hatchery program 

The construction/installation, operation, and maintenance of hatchery facilities can alter fish 
behavior and can injure or kill eggs, juveniles, and adults. These actions can also degrade habitat 
function and reduce or block access to spawning and rearing habitats altogether. Here, NMFS 
analyzes changes to: riparian habitat, channel morphology, habitat complexity, in-stream 
substrates, and water quantity and quality attributable to operation, maintenance, and 
construction activities. NMFS also confirms whether water diversions and fish passage facilities 
are constructed and operated consistent with NMFS criteria. 
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5.6. Factor 6. Fisheries that exist because of the hatchery program 

There are two aspects of fisheries that are potentially relevant to NMFS’ analysis: 

1)  Fisheries that would not exist but for the program that is the subject of the Proposed 
Action, and listed species are inadvertently and incidentally taken in those fisheries.  

2) Fisheries that are used as a tool to prevent the hatchery fish associated with the HGMP, 
including hatchery fish included in an ESA-listed salmon ESU or steelhead DPS, from 
spawning naturally.  

 
“Many hatchery programs are capable of producing more fish than are immediately useful in the 
conservation and recovery of an ESU and can play an important role in fulfilling trust and treaty 
obligations with regard to harvest of some Pacific salmon and steelhead populations. For ESUs 
listed as threatened, NMFS will, where appropriate, exercise its authority under section 4(d) of 
the ESA to allow the harvest of listed hatchery fish that are surplus to the conservation and 
recovery needs of the ESU, in accordance with approved harvest plans” (NMFS 2005c). In any 
event, fisheries must be carefully evaluated and monitored based on the take, including catch and 
release effects, of ESA-listed species. 
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